Previous Frame Next Frame
  • Node
  • Node
  • Node

126

Le ciment Portland et les ciments Portland composés : les additions minérales (supplementary cementitious materials ou SCM) - Notation et normalisation des produits (V. Thiéry et D. Bulteel)

Abdo J. (2008). – Ciments. Techniques de l'ingénieur - Les matériaux de construction traditionnels, base documentaire : TIB224DUO (ref. article : c920), p. 1-16.

Ahmaruzzaman M. (2010). – A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), p. 327-363.

Gartner E. (2004). – Industrially interesting approaches to "low-CO2" cements. Cement and Concrete Research, 34(9), p. 1489-1498.

Moulin I. (2008). – Valorisation des coproduits et des déchets. Ciments, Bétons, Plâtres, Chaux, 894, p. 46-52.

Shi C., Fernández Jiménez A., Palomo A. (2011). – New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41(7), p. 750-763.

 

 

Pétrographie appliquée à la caractérisation minéralogique et microstructurale des clinkers et ciments (V. Thiéry)

Campbell D.H. (1999). – Microscopical examination and interpretation of Portland cement and clinker. Portland Cement Association, 202 p.

Hofmänner F. (1973). – Microstructure of Portland Cement Clinker. Holderbank Management and Consulting, 48 p.

 

 

Enjeux scientifiques en relation avec la minéralogique du clinker (D. Damidot)

Sorrentino F. (2011). – Chemistry and engineering of the production process: State of the art. Cement and Concrete Research, 41, p. 616–623.

Zhang X., Zhao M., Zhang Y. (2012). – Preparation and properties of self-pulverizing calcium sulfoaluminate cement. Construction and Building Materials, 34, p. 107–113.

 

 

Le ciment alumineux fondu (V. Thiéry)

Bied J. (1926). – Recherches industrielles sur les chaux, ciments et mortiers. Dunod, Paris, 235 p.

Lea F.M. (1970). – The Chemistry of cement and concrete. Edward Arnold, London, 1057 p.

Pöllmann H. (2012). – Calcium Aluminate Cements - Raw Materials, Differences, Hydration and Properties. Reviews in Mineralogy and Geochemistry, 74(1), p. 1-82.

Scrivener K.L., Cabiron J.-L., Letourneux R. (1999). – High-performance concretes from calcium aluminate cements. Cement and Concrete Research, 29(8), p. 1215-1223.

St John D.A., Poole A.W., Sims I. (1998). – Concrete petrography - a handbook of investigative techniques. Arnold, London, 474 p.

 

 

Le métamorphisme de ultra-haute température (UHT) des roches à Ca-Si (Al, Fe) Comparaison succincte des occurrences naturelles avec la minéralogie du clinker (V. Thiéry, E.V. Sokol, S.N. Kokh, N.-N. Masalehdan)

Arnold R. and Anderson R. (1907). – Geology and oil resources of the Santa Maria Oil District, Santa Barbara County, California. U.S. Geol. Surv. Bull., 322, p. 48-52.

Gross S. (1977). – The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, p. 1-80.

Gur D., Steinitz G., Kolodny Y., Starinsky A. and McWilliams M. (1995). – 40Ar/39Ar dating of combustion metamorphism ("Mottled Zone", Israel). Chemical Geology, 122(1-4), p. 171-184.

Hentschel G. (1964). – Mayenit, 12CaO.7Al2O3, und Brownmillerit, 2CaO.(Al,Fe)2O3, zwei neue Minerale in den Kalksteineinschlüssen der Lava des Ettringer Bellerberses. Neues Jahrbuch für Mineralogie Monatshefte, 1, p. 22-29.

Hovland M., Hill A. and Stokes D. (1997). – The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology, 21(1), p. 1-15.

Kelsey D.E. (2008). – On ultrahigh-temperature crustal metamorphism. Gondwana Research, 13(1), p. 1-29.

Kolodny Y. (1979). – Natural cement factory: a geological story. In J. Skalny, Ed. Cement Production and Use, p. 203-216.

Kopf A.J. (2002). – Significance of mud volcanism. Rev. Geophys., 40(2), p. 1005.

Kugler H.G. (1939). – Visit to Russian oil districts. J. Inst. Pet. Technol. Trinidad, 25(184), p. 68-88.

Moore P.B. and Araki T. (1976). – The crystal structure of bredigite and the genealogy of some alkaline earth orthosilicates. American Mineralogist, 61, p. 74-87.

Planke S., Svensen H., Hovland M., Banks D.A. and Jamtveit B. (2003). – Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Marine Letters, 23(3), p. 258-268.

Redhammer G.J., Tippelt G., Roth G. and Amthauer G. (2004). – Structural variations in the brownmillerite series Ca2(Fe2-xAlx)O5: Single-crystal X-ray diffraction at 25°C and high-temperature X-ray powder diffraction (25°C ≤ T ≤ 1000°C). American Mineralogist, 89(2-3), p. 405-420.

Sharygin V.V., Sokol E.V. and Belakovskii D.I. (2009). – Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russian Geology and Geophysics, 50(8), p. 703-721.

Sharygin V.V., Sokol E.V. and Vapnik Y. (2008). – Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, p. 709-729.

Sokol E., Novikov I., Vapnik Y. and Sharygin V. (2007). – Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413(2), p. 474-480.

Sokol E., Novikov I., Zateeva S., Sharygin V. and Vapnik Y. (2008). – Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim formation, Israel). Doklady Earth Sciences, 420(1), p. 608-614.

Sokol E., Novikov I., Zateeva S., Vapnik Y., Shagam R. and Kozmenko O. (2010) – Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22(4), p. 414-438.

Sokol E.V. and Volkova N.I. (2007). – Combustion metamorphic events resulting from natural coal fires. Reviews in Engineering Geology, 18, p. 97-115.

 

 

Aperçu des mécanismes d’hydratation du ciment et analogues naturels

Balonis M. and Glasser F.P. (2009). – The density of cement phases. Cement and Concrete Research, 39(9), p. 733-739.

Baltakys K. and Siauciunas R. (2010). – Influence of gypsum additive on the gyrolite formation process. Cement and Concrete Research, 40(3), p. 376-383.

Bannister F.A., Hey, M.H. and Bernal J. (1936). – Ettringite from Scawt Hill, Co. Antrim. Mineralogical Magazine, 24, p. 324-329.

Bullard J.W., Jennings H.M., Livingston R.A., Nonat A., Scherer G.W., Schweitzer J.S., Scrivener K.L. and Thomas J.J. (2011). – Mechanisms of cement hydration. Cement and Concrete Research, 41(12), p. 1208-1223.

Kalousek G.L., Mitsuda T. and Taylor H.F.W. (1977). – Xonotlite: Cell parameters, thermogravimetry and analytical electron microscopy. Cement and Concrete Research, 7(3), p. 305-312.

McConnell J.D.C. (1955). – The Hydration of Larnite (β-Ca2SiO4) and Bredigite (α-Ca2SiO4) and the Properties of the Resulting Gelatinous Mineral Plombierite. Mineralogical Magazine, 30, p. 672-680.

Milodowski A.E., Rochelle C.A., Lacinska A. and Wagner D. (2011). – A natural analogue study of CO2 -cement interaction: Carbonation of calcium silicate hydrate-bearing rocks from Northern Ireland. Energy Procedia, 4, p. 5235-5242.

Pekov I.V., Chukanov N.V., Britvin S.N., Kabalov Y.K., Göttlicher J., Yapaskurt V.O., Zadov A.E.,

Krivovichev S.V., Schüller W. and Ternes B. (2012). – The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite-hielscherite solid-solution series. Mineralogical Magazine, 76(5), p. 1133-1152.

Richardson I.G. (2000). – The nature of the hydration products in hardened cement pastes. Cement and Concrete Composites, 22(2), p. 97-113.

Richardson I.G. (2008). – The calcium silicate hydrates. Cement and Concrete Research, 38(2), p. 137-158.

Rochelle C.A. and Milodowski A.E. (2013). – Carbonation of borehole seals: Comparing evidence from short-term laboratory experiments and long-term natural analogues. Applied Geochemistry, 30, p. 161-177.

Scrivener K.L. and Nonat A. (2011). – Hydration of cementitious materials, present and future. Cement and Concrete Research, 41(7), p. 651-665.

Speziale S., Jiang F., Mao Z., Monteiro P.J.M., Wenk H.-R., Duffy T.S. and Schilling F.R. (2008). – Single-crystal elastic constants of natural ettringite. Cement and Concrete Research, 38(7), p. 885-889.

Stark J. (2011). – Recent advances in the field of cement hydration and microstructure analysis. Cement and Concrete Research, 41(7), p. 666-678.

Tilley C.E. (1929). – On Larnite (Calcium Orthosilicate, a New Mineral) and Its Associated Minerals from the Limestone Contact-Zone of Scawt Hill, Co. Antrim. Mineralogical Magazine, 22, p. 77-86.

Tilley C.E. (1933). – Portlandite, a New Mineral from Scawt Hill, Co. Antrim. Mineralogical Magazine, 23, p. 419-420.

Tilley C.E. and Hey M.H. (1930). – Scawtite, a New Mineral from Scawt Hill, Co. Antrim. Mineralogical Magazine, 22, p. 222-224.

 

 

La région grenobloise et ses ciments

Parjadis de Larivière N. (1959). – Contribution à l'étude minéralogique des calcaires argileux du Mésozoïque des environs de Grenoble («couches à ciment» du Valbonnais, Genevray-de-Vif, Voreppe, Grenoble, Sassenage). Géologie Alpine, 35, p. 161-192.

 

 

Glossaire

Grapes R. (2010). – Calc-Silicates and Evaporates. Pyrometamorphism, Springer, Berlin Heidelberg, p. 141-197.

Lea F.M. (1970). – The Chemistry of cement and concrete. Edward Arnold, London, 1057 p.

Partenaires

  • SGN
  • GéolVal
  • Cap Terre
  • ENGIE
  • AGAP
  • FFAMP
  • AFEQ CNF INQUA
  • TOTAL
  • Société Française de Minéralogie et de Cristallographie
  • Association des Sédimentologistes Français
  • AFPG
  • AGBP
  • Schlumberger
  • CFGI
  • Musée de Minéralogie Mines Paristech
  • Lundin
  • COFRHIGEO
  • GéoPlusEnvironnement
  • SOFRECO
  • AGSO

Réunions à venir

  • RFG 2018 - Resources for Future Generations 2018
  • 5th International Palaeontological Congress
  • 4th meeting of the European 3D GeoModelling Community
  • 5th Young Natural History scientists' Meeting
  • Les géosciences dans la transition énergétique
  • Croissance, énergie, climat - Dépasser la quadrature du cercle
  • XXVIIes rencontres Géole 2018 - Le patrimoine géologique, de l’inventaire à la vulgarisation - Vers (Lot)
  • Charentes - Périgord blanc : Evolution de la plate-forme carbonatée des Charentes et du Périgord occidental depuis le Jurassique moyen jusqu'au Crétacé supérieur
  • 26e Réunion des Sciences de la Terre - Lille

Publications

  • Bulletin de la SGF | Earth Sciences Bulletin
  • Géochronique
  • Géologie de la France
  • Mémoire Nouvelle Série
  • Paléobiogéographie
  • Mémoire Hors Série
  • Géologues