360 F 30048671 zo6yATKHPV2qPQxEoqfbtDsRVpj9UNlK


Migmatites et fusion partielle (Barbey et Vanderheaghe)

Arzi A.A. (1978). – Critical phenomena in the rheology of partially melted rocks. Tectonophysics, 44, p. 173-184.

Brown M. (1994). – The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Science Reviews, 36, p. 83-130.

Jurewicz S.R. and Watson E.B. (1984). – Distribution of partial melt in a felsic system: the importance of surface energy. Contrib. Mineral. Petrol., 85, p. 125-129.

Laporte D. (1994). – Wetting behavior of partial melts during crustal anatexis: the distribution of hydrous silicic melts in polycrystalline aggregates of quartz. Contrib. Mineral. Petrol., 116, p.486-499.

Lister J.R. (1989). – Selective withdrawal from a viscous two-layer system. J. Fluid Mech., 198, p. 231-254.

Maaløe S. (1982). – Geochemical aspects of permeability controlled partial melting and fractional crystallization. Cosmochimica Acta, 46, p. 43-57.

McLellan E. (1984). – Deformational behavior of migmatites and problems of structural analysis in migmatite terrains. Geol. Mag., 121(4), p. 339-345.

Mehnert K.R. (1968). – Migmatites and the origin of granitic rocks. Elsevier, Amsterdam, London, New-York, 405 pp.

Philpotts A.R., Brustman C.M., Shi J., Carlson W.D. and Denison C., (1999). – Plagioclase-chain networks in slowly cooled basaltic magma. American Mineralogist, 84, p. 1819-1829.

Rosenberg C.L. (2001). – Deformation of partially molten granite: A review and comparison of experimental and natural case studies. International Journal of Earth Sciences, 90(1), p. 60-76.

Rutter E.H. and Neumann D.H. (1995). – Experimental deformation of partially molten Westerly granite under fluid -absent conditions, with implications for the extraction of granitic magmas. Journal of Geophysical Research-Solid Earth 100(B8), 15697-15715.

Sawyer E.W. (1994). – Melt segregation in the continental crust. Geology, 22, p. 1019-1022.

Sawyer, E.W., 2008. Atlas of migmatites. The Canadian Mineralogist, Spec. publ., 9,. NRC Research Press, Ottawa, Ontario, 371 pp.

Sederholm J.J. (1923). – On migmatites and associated Pre-Cambrian Rocks of South-western Finland. I.The Pellinge Region. Bull. Comm. géol. Finlande, 58, p.1-153.

Sederholm J.J. (1926). – On migmatites and associated Pre-Cambrian Rocks of South-western Finland. II. The region around Barosundsfjord W. of Helsingfors and neighbouring areas. Bull. Comm. géol. Finlande, 77, p. 1-143.

Van der Molen I. and Paterson M.S. (1979). – Experimental deformation of partially-melted granite. Contribution to Mineralogy and Petrology, 70, p. 299-318.

Vanderhaeghe O. (2001). – Melt segregation, pervasive melt migration and magma mobility in the continental crust: The structural record from pores to orogens. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4-5), p. 213-223.

Vanderhaeghe O. (2009). – Migmatites, granites and orogeny: Flow modes of partially molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477, p. 119-134.

Vigneresse J.-L., Barbey P. and Cuney M. (1996). – Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology, 70(6), p. 1579-1600.

Wickham S.M. (1987). – The segregation and emplacement of granitic magmas. Journal of the Geological Society of London, 144, p. 281-297.

Wyllie P.J. (1977). – Crustal anatexis: an experimental review. Tectonophysics, 43, p. 41-71.



Granites et tectoniques des plaques (Nédélec et Bouchez)

England P.C. & Thompson A.B. (1984). – Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol., 25, p. 894-928.

Martin H. et Moyen J.F. (2011). – Suites "Trondhjémites-Tonalites-Granodiorite" et sanukitoïdes archéens. Géochronique, 120, p. 31-38.

Pearce J.A., Harris N.B.W., Tindle A.G. (1984). – Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, p. 956-983.

Pitcher W.S., Atherton M.P., Cobbing E.J., Beckinsale R.D. (1985). – Magmatism at a plate edge: the Peruvian Andes. Blackie, Glasgow, 338 p.

Thompson A.B. & Connolly J.A.D. (1995). – Melting of the continental crust : some thermal and petrologic constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res., 100, p. 15565-15579.

Wyllie P.J. (1984). – Sources of granitoid magmas at convergent plate boundaries. Phys. Earth Planet. Int., 35, p. 12-18.



La structure interne des plutons granitiques : un témoin de leur mise en place (Bouchez et Nédelec)

Borrel A. (1978). – Le massif granitique du Sidobre : pétrographie, structures, relations mise en place-cristallisation. Thèse univ. Toulouse, 122 p., déposée à la Société géologique de France.

Darrozes J., Moisy M., Olivier P., Améglio L., Bouchez J.L. (1994). – Structure magmatique du granite du Sidobre (Tarn, France) : de l’échelle du massif à celle de l’échantillon. C. R. Acad. Sci. Paris, 318, p. 243-250.

Gleizes G., Leblanc D., Bouchez J.L. (1991).  – Le pluton granitique de Bassiès (Pyrénées ariégeoises) : zonation, structure et mise en place. C. R. Acad. Sci. Paris, 312, p. 755-762.

Mollier B. & Bouchez J.L. (1982). – Magmatic structure of the Brame-St-Sylvestre-St-Goussaud (Limousin, Massif Central, France) granitic complex. C.R. Acad. Sci. Paris, 294, p. 1329-1334.

Naba S., Lompo M., Debat P., Bouchez J.L., Beziat D. (2004). – Structure and emplacement model for late-orogenic Paleoproterozoic granitoids : the Tenkodogo-Yamba elongate pluton (Eastern Burkina Faso). Jour. African Earth Sciences, 38, p. 41-57.

Nédélec, A. & Bouchez, J.L. (2011).  – Pétrologie des granites – Structure, cadre géologique. Vuibert, SGF, Paris, 306 p.

Olivier P., Saint-Blanquat M. (de), Gleizes G., Leblanc D. (1997). – Homogeneity of granite fabrics at the metre and dekametre scales. In : Bouchez J.L. et al. (eds.), Granite: from segregation of melt to emplacement fabrics, Dordrecht, Kluwer Acad. Publ., p. 113-128.



La déformation des granites : zones de cisaillement ductiles (Marquer et al.)

Fusseis F., Regenauer-Lieb K., Liu J., Hough R.M. & De Carlo F. (2009). – Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature, 459, p. 974-977.

Gapais D., Bale P., Choukroune P., Cobbold P., Mahdjoub Y & Marquer D. (1987). – Bulk kinematics from shear zone patterns ; some field examples. J. Struct. Geol., 9 (5/6), p. 635-646.

Gapais d. (1989). – Shear structures within deformed granites : Mechanical and thermal indicators. Geology, 17, p. 1144-1147.

Mc Caig A. M. (1997). – The Geochemistry of volatile fluid flow in shear zones. In : Holness, M. (ed.) Deformation enhanced melt segregation and metamorphic fluid transport. Chapman and Hall, London, p. 227-260.

Marquer D. (1989). – Transfert de matière et déformation des granitoïdes - Aspects méthodologiques. Schweiz Mineral. Petrog. Mitt., 69, p. 13-33.

Ramsay J.G et Graham R.H. (1970). – Strain variation in shear belts. Can. J. Earth Sc., 7, p. 786-813.

Rolin P., Marquer D., Colchen M., Thieblemont D. & Rossi P. (2008). – Progressive shortening axis rotation recorded by Variscan synkinematic granites : example of the South Armorican shear zone in the Vendée (France). Geodinamica Acta, 21(4), p. 203-218.



Suites « Trondhjémites – Tonalites – Granodiorite » et sanukitoïdes archéens (Martin et Moyen)

Albarède F., (1998). – The growth of continental crust. Tectonophysics, 296, p. 1-14.

Alonso-Perez R., Müntener O. and Ulmer P. (2009). – Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib. Mineral. Petrol., 157(4), p. 541-558.

Anhausser C.R., Mason P., Viljoen M.J. and Viljoen R.P. (1969). – A reapprisial of some aspects of Precambrian shields geology. Geol. Soc. Am. Bull., 80, p. 2175-2200.

Anma R. et al., (2009). – Are the Taitao granites formed due to subduction of the Chile ridge? Lithos, 113(1-2), p. 246-258.

Arth J.G., Barker F., Peterman Z.E. and Frideman I. (1978). – Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of south-west Finland and its implications for the origin of tonalitic and trondhjemitic magmas. J. Petrol., 19, p. 289-316.

Arth J.G. and Hanson G.N. (1975). – Geochemistry and origin of the Early Precambrian crust of north-eastern Minnesota. Geochim. Cosmochim. Acta, 39, p. 325-362.

Atherton M.P. and Petford N. (1993). – Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362, p. 144-146.

Barker F. (1979). – Trondhjemites: definition, environment and hypothesis of origin. In: F. Barker (Editor), Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, p. 1-12.

Barker F., Arth J.G. and Millard H.T. (1979). – Archaean trondhjemites of the southwestern Big Horn Mountains, Wyoming : a preliminary report. In: F. Barker (Editor), Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, p. 401-414.

Barth M.G., Foley S.F. and Horn I. (2002). – Partial melting in Archaean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res., 113, p. 323-340.

Beard J.S. and Lofgren G.E. (1989). – Effect of water on the composition of partial melts of greenstones and amphibolites. Science, 144, p. 195-197.

Beard J.S. and Lofgren G.E. (1991). – Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J. Petrol., 32, p. 465-501.

Bédard J. (2006). – A catalytic delamination-driven model for coupled genesis of Archaean crust and subcontinental lithospheric mantle. Geochim. Cosmochim. Acta, 70(5), p. 1188-1214.

Black L.P., Gale N.H., Moorbath S., Pankhurst R.J. and McGregor V.R. (1971). – Isotopic dating of very early Precambrian amphibolite facies gneisses from the Godthaab district, West Greenland. Earth Planet. Sci. Lett., 12(3), p. 245-259.

Blichert-Toft J. and Albarède F. (2008). – Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett., 265(3-4), p.686-702.

Bliss N.W. and Stidolph P.A. (1969). – A review of the Rhodesian basement complex. Geol. Soc. S. Afr. Spec. Publ., 2, p. 305-333.

Bourdon E., Eissen J.-P., Gutscher M.-A., Monzier M., Hall M.L. and Cotten J., (2003). – Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet. Sci. Lett., 205(3-4), p. 123-138.

Bourgois J., Martin H., Lagabrielle Y., LeMoigne J. and Frutos Jara J. (1996). – Subduction-erosion related to ridge-trench collision: Taitao Peninsula (Chile margin triple junction area). Geology, 24, p. 723-726.

Bowring S.A. and Williams I.S. (1999). – Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, p. 3-16.

Bridgwater D. and Collerson K.D. (1976). – The major petrological and geochemical characters of the 3600 m.y. Uivak gneisses from Labrador. Contrib. Mineral. Petrol., 54, p. 43-60.

Condie K.C. (1980). – Origin and early development of the earth's crust. Precambrian Res., 11, p. 183-197.

Condie K.C. (1981). – Archaean greenstone belts. Elsevier, Amsterdam, 434 p.

Condie K.C. (1986). – Origin and early growth rate of continents. Precambrian Res., 32, p. 261-278.

Condie K.C. (1989). – Plate tectonics and crustal evolution. Pergamon, Oxford, 476 p.

Condie K.C. (1998). – Episodic continental growth and supercontinents : a mantle avalanche connection? Earth Planet. Sci. Lett., 163(1-4), p. 97-108.

Condie K.C. (2005). – TTGs and adakites: are they both slab melts? Lithos, 80, p. 33-44.

Condie K.C. and Hunter D.R. (1976). – Trace element geochemistry of Archaean granitic rocks from Barberton region, South Africa. Earth Planet. Sci. Lett., 29, p. 389-400.

Condie K.C., O'Neill C. and Aster R.C. (2009). – Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth Planet. Sci. Lett., 282(1-4), p. 294-298.

de Wit M.J. (1998). – On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res., 91(1-2), p. 181-226.

Defant M.J. and Drummond M.S. (1990). – Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, p. 662-665.

Drummond M.S. and Defant M.J. (1990). A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons. J. Geophys. Res., 95, p. 21503-21521.

Ellam R.M. and Hawkesworth C.J. (1988). – Is average continental crust generated at subduction zones? Geology, 16, p. 314-317.

Foley S.F., Tiepolo M. and Vannucci R. (2002). – Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, p. 837-840.

Glikson A.Y. and Sheraton J.W. (1972). – Early Precambrian trondhjemitic suites in Western Australia and northwestern Scotland and the geochemical evolution of shields. Earth Planet. Sci. Lett., 17, p. 227-242.

Goldich S.S., Hedge C.E. and Stern T.W. (1970). – Age of the Morton and Montevideo gneisses and related rocks, southwestern Minnessota. Geol. Soc. Am. Bull., 81, p. 3671-3996.

Gower C.F., Crocket J.H. and Kabir A. (1983). – Petrogenesis of Archaean granitoid plutons from the Kenora area, English River sub province, Northwest Ontario, Canada. Precambrian Res., 22, p. 245-270.

Green D.H. (1976). – Experimental testing of equilibrium partial melting of peridotite under water-saturated, high pressure conditions. Canadian Mineralogist, 14, p. 255-268.

Guitreau M., Blichert-Toft J., Martin H., Mjozsis S.J. and Albarède F. (2010). – Progressive removal of an upper-mantle KREEP component by TTG magmatism through the Hadean?, American Geophysical Union, Fall meeting, San Francisco (USA), p. V53A-2228.

Hanson G.N. and Goldich S.S. (1972). – Early Precambrain rocks in the Saganaga Lake, Nothern Light Lake area, Minnesota - Ontario; Part 2: petrogenesis. In: B.R. Doe and D.K. Smith (Editors), Studies in mineralogy and Precambrain geology. Geological Society of America Memoir, 135, p. 179-192.

Hanson G.N., Goldich S.S., Arth J.G. and Yardley D.H. (1971). – Age of the early Precambrian rocks of the Saganaga Lake - Nothern Light Lake area, Ontario-Minnesota. Can. J. Earth Sci., 8, p. 1110-1124.

Heimlich R.A. (1969). – Reconnaissance petrology of Precambrian rocks in the Bighorn Mountain, Wyoming. Contrib. Geol., 8, p. 47-61.

Heimlich R.A. and Banks P.O. (1968). – Radiometric age determinations, Bighorn Mountains, Wyoming. Am. J. Sci., 266, p. 180-192.

Helz R.T. (1976). – Phase relations in basalts in their melting range at P(H2O) = 5 kb. Part II. Melt compositions. J. Petrol., 17, p. 139-193.

Hidalgo S., Monzier M., Martin H., Chazot G., Eissen J.-P. and Cotten J. (2007). – Adakitic magmas in the Ecuadorian Volcanic Front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). J. Volcanol. Geotherm. Res., 159, p. 366-392.

Holloway J.R. and Burnham C.W. (1972). – Melting relations of basalt with equilibrium water pressure less than total pressure. J. Petrol., 13, p. 1-29.

Hunter D.R. (1970). – The Ancient gneiss complex in Swaziland. Trans. Geol. Soc. S. Afr., 73, p. 107-150.

Hunter D.R., Barker F. and Millard H.T. (1978). – The geochemical nature of the Archaean Ancient Gneiss Complex and granodioritic suite, Swaziland: a preliminary study. Precambrian Res., 7, p. 105-127.

Iizuka, T. et al., 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: New constraints on its tectonothermal history. Precambrian Res., 153(3-4), p. 179-208.

Jahn B.M., Glikson A.Y., Peucat J.-J. and Hickman A.H. (1981). – REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block, western Australia: implications for the early crustal evolution. Geochim. Cosmochim. Acta, 45, p. 1633-1652.

Kamber B.S., Ewart A., Collerson K.D., Bruce M.C. and Mc Donald G.A. (2002). – Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib. Mineral. Petrol., 144, p. 38-56.

Kay R.W. (1978). – Aleutian magnesian andesites : melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res., 4, p. 117-132.

Kelemen P.B., Hart S.R. and Bernstein S. (1998). – Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett., 164, p. 387-406.

Kouvo O. and Tilton G.R. (1966). – Mineral ages from the Finnish Precambrian. J. Geol., 74, p. 421-442.

Kushiro I., Yoder H.S. and Nishikawa M. (1972). – Compositions of coexisting liquid and solid phases formed upon melting of natural garnet and spinel lherzolites at high pressures. A preliminary report. Earth Planet. Sci. Lett., 14, p. 19-25.

Lameyre J. and Bowden P. (1982). – Plutonic rock type series: discrimination of various granitoid series and related rocks. J. Volcanol. Geotherm. Res., 14, p. 169-186.

Lund R.H. (1956). – Igneous and metamorphic rocks of the Minnessota River Valley. Geol. Soc. Am. Bull., 67, p. 1475-1490.

Macpherson C.G., Dreher S.T. and Thirlwall M.F. (2006). – Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett., 243(3-4), p. 581-593.

Martin E., Martin H. and Sigmarsson O. (2008). – Could Iceland be a modern analogue for the Earth’s early continental crust? Terra Nova, 20, p. 463-468.

Martin E., Martin H. and Sigmarsson O. (2010a). – Comment on "Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation" by Willbold, M., Hegner, E., Stracke A. and Rocholl A. Earth Planet. Sci. Lett., 293(1-2), p. 218-219.

Martin E. and Sigmarsson O. (2005). – Trondhjemitic and granitic melts formed by fractional crystallization of an olivine tholeiite from Reykjanes Peninsula, Iceland. Geological Magazine, 142(5), p. 1-8.

Martin E. and Sigmarsson O. (2007). – Segregation veins formed by in-situ differentiation of tholeiitic lavas from  Reykjanes (Iceland), Lanzarote (Canary Islands) and masaya (Nicaragua). Contrib. Mineral. Petrol.: in press.

Martin H. (1986). – Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, p. 753-756.

Martin H. (1987). – Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland : major and trace element geochemistry. J. Petrol., 28(5), p.921-953.

Martin H. (1988). – Archaean and modern granitoids as indicators of changes in geodynamic processes. Revista Brasileira de Geociencias, 17, p. 360 365.

Martin H. (1993). – The mechanisms of petrogenesis of the Archaean continental crust-comparison with modern processes. Lithos, 30, p. 373-388.

Martin H. (1999). – The adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), p. 411-429.

Martin H., Chauvel C. and Jahn B.M. (1983). – Major and trace element geochemistry and crustal evolution of granodioritic Archaean rocks from eastern Finland. Precambrian Res., 21, p. 159-180.

Martin H. and Moyen J.-F. (2002). – Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology, 30(4), p. 319-322.

Martin H., Moyen J.-F. and Rapp R. (2010b.) – The sanukitoid series: magmatism at the Archaean–Proterozoic transition. Geol. Soc. Am. Special Papers, 472, p. 15-33.

Martin H., Smithies R.H., Rapp R., Moyen J.-F. and Champion D. (2005). – An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2), p. 1-24.

Maury R.C., Sajona F.G., Pubellier M., Bellon H. and Defant M.J. (1996). – Fusion de la croûte océanique dans les zones de subduction/collision récentes : l'exemple de Mindanao (Philippines). Bull. Soc. géol. Fr., 167(5), p. 579-595.

McCulloch M.T. and Bennet V.C., (1993). – Evolution of the early Earth: constraints from 143Nd-142Nd isotopic systematics. Lithos, 30, p. 237-255.

McGregor V.R. (1973). – The early Precambrian geology of the  Godthåb district, West Greenland. Phil. Trans. R. Soc. London, Ser. A, 273, p. 243-258.

Moorbath S. (1975). – Evolution of Precambrian crust from strontium isotopic evidence. Nature, 254, p. 395-398.

Moorbath S., O'Nions R.K., Pankhurst R.J., Gale N.H. and McGregor V.R. (1972). – Further rubidium-strontium age determinations on the very eary Precambrian rocks of Godthaab region, West Greenland. Nature, 240, p. 78-82.

Moyen J.-F. (2009). – High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos, 112(3-4), p. 556-574.

Moyen J.-F. (2011). – The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123(1-4), p. 21-36.

Moyen J.-F., Martin H. and Jayananda M. (2001). – Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth : the Closepet granite (South India). Precambrian Res., 112, p. 87-105.

Moyen J.-F. and Stevens G. (2006). – Experimental constraints on TTG petrogenesis : implications for Archaean geodynamics. In: K. Benn, K.C. Condie and J.C. Mareschal (Editors), Archaean geodynamics and environments. Geophys. monogr. Ser., 164 p. 149-175.

Moyen J.-F., Stevens G. and Kisters A. (2006). – Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature, 442(7102), p. 559-562.

Müntener O. and Ulmer P. (2006). – Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys. Res. Lett., 33(21), L21308.

Mysen B.O. and Boettcher A.L. (1975). – Melting of a hydrous mantle I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J. Petrol., 16, p. 520-548.

Nair R. and Chacko T. (2008). Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 36(7), p. 583-586.

Nicholls I.A. (1974). – Liquid in equilibrium with peridotitic mineral assemblages at high water pressure. Contrib. Mineral. Petrol., 45, p. 289-316.

O'Connor J.T. (1965). – A classification for quartz-rich igneous rocks based on feldspar ratios. U.S. Geol. Surv. Prof. Pap., 525-B, p. 79-84.

O'Nions R.K. and Pankhurst R.J. (1978). – Early Archaean rocks and geochemical evolution of the Earth's crust. Earth Planet. Sci. Lett., 38, p. 211-236.

Peterman Z.E. and Barker F. (1976). – Rb-Sr whole-rock age of trondhjemites and related rocks of the south western Trondheim region, Norway. USGS Open File Report, 76(670), p. 1-17.

Prouteau G., Scaillet B., Pichavant M. and Maury R.C. (2001). – Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410, p. 197-200.

Prouteau G.L. and Scaillet B. (2003). – Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. J. Petrol., 44(12), p. 2203-2241.

Rapp R.P., Laporte D. and Martin H. (2005). – Adakite induced metasomatism of the mantle wedge : a systematic experimental study at 1.6 GPa., American Geophysical Union, Fall Meeting, San Francisco.

Rapp R.P., Norman M.D., Laporte D., Yaxley G.M., Martin H. and Foley S.F. (2010). – Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt-Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids). J. Petrology, 51(6), p. 1237-1266.

Rapp R.P., Shimizu N., Norman M.D. and Applegate G.S. (1999). – Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology, 160, p. 335-356.

Rapp R.P. and Watson E.B. (1995). – Dehydratation melting of metabasalt at 8-32 kbar : implications for continental growth and crust-mantle recycling. J. Petrol., 36(4), p. 891-931.

Rapp R.P., Watson E.B. and Miller C.F. (1991). – Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res., 51, p. 1-25.

Rogers G., Saunders A.D., Terrell D.J., Verma S.P. and Marriner G.F. (1985). – Geochemistry of holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 315, p. 389-392.

Rollinson H. (1997). – Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation. Nature, 389, p. 173-176.

Rudnick R.L. (1995). – Making continental crust. Nature, 378, p. 571-577.

Rushmer T. (1991). – Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib. Mineral. Petrol., 107, p. 41-59.

Samaniego P., Martin H., Robin C. and Monzier M. (2002). – Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions. Geology, 30(11), p. 967-970.

Samaniego P., Robin C., Chazot G., Bourdon E. and Cotten J. (2010). – Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador).n. Contrib. Mineral. Petrol.: in press.

Schiano P., Clochiatti R., Shimizu N., Maury R.C., Jochum K.P. and A.W. Hofmann (1995). Hydrous, silica-rich melts in the sub-arc mantle and their relationships with erupted arc lavas. Nature, 377, p. 595-600.

Schiano P., Monzier M., Eissen J.-P., Martin H. and Koga K. (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petrol., 160, p. 297-312.

Sen C. and Dunn T. (1994). – Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contrib. Mineral. Petrol., 119, p. 422-432.

Sheraton J.W. (1970). – The origin of the Lewisian gneisses of Northwest Scotland, with particular reference to the Drumbeg area, Sutherland. Earth Planet. Sci. Lett., 8, p. 301-310.

Shirey S.B. and Hanson G.N. (1984). – Mantle derived Archaean monzodiorites and trachyandesites. Nature, 310, p. 222-224.

Smithies R.H. (2000). – The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett., 182, p. 115-125.

Smithies R.H. and Champion D.C. (1999). – High-Mg diorite from the Archaean Pilbara Craton; anorogenic magmas derived from a subduction-modified mantle. Geol. Surv. West. Aust. Annu., 1998-1999, p. 45-59.

Smithies R.H. and Champion D.C. (2000). – The Archaean high-Mg diorite suite: Links to Tonalite-Trondhjemite-Granodiorite magmatism and implications for early Archaean crustal growth. J. Petrol., 41(12), p. 1653-1671.

Smithies R.H., Champion D.C. and Van Kranendonk M.J. (2009). – Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett., 281(3-4), p. 298-306.

Smithies R.H., Van Kranendonk M.J. and Champion D.C. (2005). – It started with a plume - early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett., 238(3-4), p. 284-297.

Stein M. and Hofmann A.W. (1994). – Mantle plumes and episodic crustal growth. Nature, 372, p. 63-68.

Stern R. (1989). – Petrogenesis of the Archaean sanukitoid suite., State University at Stony Brook, New York, 275 p.

Stern R.A. and Bleeker W. (1998). – Age of the world's oldest rocks refined using Canada's SHRIMP: the Acasta Gneiss Complex, Northwest Territories. Geosci. Can., 25, p. 27–31.

Stevens G., Villaros A. and Moyen J.-F. (2007). – Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology, 35(1), p. 9-12.

Tarney J., Weaver B.L. and Drury S.A. (1979). – Geochemistry of Archaean trondhjemitic and tonalitic gneisses from Scotland and E. Greenland. In: F. Barker (Editor), Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, p. 275-299.

Tarney J., Weaver B.L. and Winley B.F. (1982). – Geological and geochemical evolution of the Archaean continental crust. Revista Brasileira de Geociencias, 12, p. 53-59.

Tatsumi Y. and Ishizaka K. (1982). – Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth Planet. Sci. Lett., 60(2), p. 293-304.

Taylor S.R. and McLennan S.M. (1985). – The continental crust: its composition and evolution. Blackwell scientific Publications, Oxford, 312 p.

Viljoen M.J. and Viljoen R.P. (1969). – The chemical evolution of the granitic rocks of the Barberton region. Geol. Soc. S. Afr. Spec. Publ., 2, p. 189-220.

Weaver B.L. and Tarney J. (1980). – Rare-Earth geochemistry of lewisian granulite facies gneisses, northwest Scotland : implications for the petrogenesis of the Archaean lower continental crust. Earth Planet. Sci. Lett., 51, p. 279-296.

Willbold M., Hegner E., Stracke A. and Rocholl A. (2009). – Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet. Sci. Lett., 279(1-2), p. 44-52.

Winther T.K. and Newton R.C. (1991). – Experimental melting of an hydrous low-K tholeiite: evidence on the origin of Archaean cratons. Bull. Geol. Soc. Den., 39, p. 213-228.

Wolf M.B. and Wyllie P.J. (1991). – Dehydration-melting of solid amphibolite at 10 Kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. Contrib. Mineral. Petrol., 44, p. 151-179.

Wolf M.B. and Wyllie P.J. (1994). – Dehydration-melting of amphibolite at 10 Kbar: the effects of temperature and time. Contrib. Mineral. Petrol., 115, p. 369-383.

Yaxley G.M. and Green D.H. (1998). – Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizeriche Mineralogische und Petrographische Mitteilungen, 78, p. 243-255.



Les granitoïdes hadéens (Martin)

Amelin Y., Krot A.N., Hutcheon I.D. and Ulyanov A.A. (2002). – Lead isotopic ages of chondrules and calcium-aluminium-rich inclusions. Science, 297, p. 1678-1683.

Blichert-Toft J. and Albarède F. (2008). – Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett., 265(3-4), p. 686-702.

Bowring S.A. and Williams I.S. (1999). – Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol., 134, p. 3-16.

Cavosie A.J., Wilde S.A., Liu D., Weiblen P.W. and Valley J.W. (2004). – Internal zoning and U- Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348-1576 Ma) magmatism. Precambrian Res., 135(4), p. 251-279.

Compston W. and Pidgeon R.T. (1986). – Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321, p. 766-769.

Froude D.O. et al. (1983). – Ion microprobe identification of 4,000-4,200 Myr-old terrestrial zircons. Nature, 304, p. 616-618.

Gomes R., Levison H.F., Tsiganis K. and Morbidelli A. (2005). – Origin of cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, p. 466-469.

Grange M.L., Wilde S.A., Nemchin A.A. and Pidgeon R.T. (2010). – Proterozoic events recorded in quartzite cobbles at Jack Hills, Western Australia: New constraints on sedimentation and source of > 4 Ga zircons. Earth Planet. Sci. Lett., 292(1-2), p. 158-169.

Hopkins M.D., Harrison M.T. and Manning C.E. (2008). – Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature, 456, p. 493–496.

Hopkins M.D., Harrison T.M. and Manning C.E. (2010). – Constraints on Hadean geodynamics from mineral inclusions in > 4 Ga zircons. Earth Planet. Sci. Lett., 298(3-4), p. 367-376.

Hoskin P.W.O. (2005). – Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, 69(3), p. 637-648.

Iizuka T. et al., (2006). – 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology, 34(4), p. 245-248.

Iizuka T., Komiya T., Johnson S.P., Kon Y., Maruyama S. and Hirata T. (2009). – Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu-Hf isotope analysis of zircon. Chemical Geology, 259(3-4), p. 230-239.

Kemp A.I.S. et al. (2010). – Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett., 296(1-2), p. 45-56.

Kring D.A. and Cohen B.A. (2002). – Cataclysmic bombardment throughout the inner solar system 3.9-4.0 Ga. J. Geophys. Res., 107(E2), p. 4-1- 4-6.

Maas R., Kinny P.D., Williams I.S., Froude D.O. and Compston W. (1992). – The Earth's oldest known crust: a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56(3), p. 1281-1300.

Martin H. (1986). – Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, p. 753-756.

Martin H. et al. (2006). – Building of a habitable planet. Earth, Moon and Planets, 98, p. 97-151.

Menneken M., Nemchin A.A., Geisler T., Pidgeon R.T. and Wilde S.A. (2007). – Hadean diamonds in zircon from Jack Hills, Western Australia. Nature, 448, p. 917-920.

Mojzsis S.J., Harrison M.T. and Pidgeon R.T. (2001). – Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature, 409, p. 178-181.

Nebel-Jacobsen Y., Münker C., Nebel O., Gerdes A., Mezger K. and Nelson D.R., (2010). – Reworking of Earth's first crust: Constraints from Hf isotopes in Archean zircons from Mt. Narryer, Australia. Precambrian Res., 182(3), p. 175-186.

Nemchim A., Whitehouse M.J., Menneken M., Geisler T., Pidgeon R.T. and Wilde S.A. (2008). – A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature, 454, p. 92-96.

O'Neil J., Carlson R.W., Francis D. and Stevenson R.K. (2008). – Neodymium-142 evidence for Hadean mafic crust. Science, 321, p. 1828-1831.

Peck W.H., Valley J.W., Wilde S.A. and Graham C.M. (2001). – Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high [delta]18O continental crust and oceans in the Early Archean. Geochim. Cosmochim. Acta, 65(22), p. 4215-4229.

Rasmussen B., Fletcher I.R., Muhling J.R. and Wilde S.A. (2010). – In situ U/Th/Pb geochronology of monazite and xenotime from the Jack Hills Belt; implications for the age of deposition and metamorphism of Hadean zircons. Precambrian Res., 180(1-2), p. 26-46.

Ryder G., Koeberl C. and Mojzsis S.J. (2000). – Heavy bombardment of the Earth at ~3.85 Ga: The search for petrographic and geochemical evidence. In: R.M. Canup and K. Righter (Editors), Origin of the Earth and Moon. Arizona University Press, p. 475-492.

Trail D., Mojzsis S.J. and Harrison M.T. (2004). – Inclusion mineralogy of pre-4.0 Ga zircons from Jack Hills, Western Australia: a progress report. Geochim. Cosmochim. Acta, 68(11), A743.

Ushikubo T., Kita N.T., Cavosie A.J., Wilde S.A., Rudnick R.L. and Valley J.W. (2008). – Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust. Earth Planet. Sci. Lett., 272(3-4), p. 666-676.

Valley J.W., Peck W.H., King E.M. and Wilde S.A. (2002). – A Cool Early Earth. Geology, 30, p. 351-354.

Watson E.B. and Harrison M.T. (2006). – Response to Comments on "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth". Science, 311, p. 779.

Watson E.B. and Harrison T.M. (2005). – Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308, p. 841-844.

Watson E.B., Wark D.A. and Thomas J.B. (2006). – Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151, p. 413–433.

Wilde S.A. (2010). – Proterozoic volcanism in the Jack Hills Belt, Western Australia: Some implications and consequences for the World's oldest zircon population. Precambrian Res., 183(1), p. 9-24.

Wilde S.A., Valley J.W., Peck W.H. and Graham C.M. (2001). – Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature, 409, p. 175-178.

Lettres d'info | Actualités


Abonnez-vous à notre lettre d'info mensuelle

J'accepte les Conditions d'utilisation et la Politique de confidentialité

facebook SGF  twitter SGF  youtube SGF  linkedin SGF  instagram SGF 

Réunions à venir


  • Géologie de la France
  • Paléobiogéographie
  • Géochronique
  • Bulletin de la SGF | Earth Sciences Bulletin
  • Mémoire Nouvelle Série
  • Mémoire Hors Série
  • Géologues


  • Musée de Minéralogie Mines Paristech
  • AGBP
  • Schlumberger
  • CFGI
  • SGN
  • GéolVal
  • Cap Terre
  • GéoPlusEnvironnement
  • AFPG
  • Société Française de Minéralogie et de Cristallographie
  • Association des Sédimentologistes Français
  • AGSO
  • AGAP
  • Lundin