360 F 30048671 zo6yATKHPV2qPQxEoqfbtDsRVpj9UNlK

  • Le fonds

136La transition diagenèse métamorphisme (M. Dubois et F. Bourdelle)

Árkai P., Sassi F.P. et Desmons J. (2003). – Very low- to low-metamorphic rocks, IUGS Subcommission on the Systematics of Metamorphic Rocks (SCMR), 12 p.

Barker C. E. et Pawlewicz M.J. (1994). – Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperatures. In: Vitrinite Reflectance as a Maturity Parameter, P. K. Mukhopadhyay et W. G. Dow (Eds), American Chemical Society, p. 216-229.

Baronnet A. (1992). – Polytypism and stacking disorder. In: Mineral reactions at the atomic scale: transmission electron microscopy, P. Buseck (Ed). Minerological Society of America, p. 232-288.

Bourdelle F., Parra T., Beyssac O., Chopin C. et Moreau F. (2012). – Ultrathin section preparation of phyllosilicates by Focused Ion Beam milling for quantitative analysis by TEM-EDX. Applied Clay Science, 59-60, p. 121-130.

Bourdelle F., Benzerara K., Beyssac O., Cosmidis J., Neuville D.R., Brown G.E. Jr, et Paineau E. (2013a). – Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges. Contributions to Mineralogy and Petrology, 166, p. 423-434.

Bourdelle F., Parra T., Chopin C. et Beyssac O. (2013b). – A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contributionns to Mineralogy and Petrology, 165, p. 723–735.

Coombs D. (1961).– Some recent work in the lower grades of metamorphism. Australian Journal of Science, 24, p. 203-215.

Dow W. G. (1977). – Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, p. 79-99.

Dubacq B., Vidal O. et de Andrade V. (2010). – Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contributions to Mineralogy and Petrology, 159, p. 159-174.

Epstein A.G., Epstein J.B. et Harris L.D. (1977). – Conodont Color Alteration - an Index to Organic Metamorphism. Geological Survey Professional Paper, 995, Washington, 27 p.

Essene E. J. et D. R. Peacor (1995). – Clay mineral thermometry - A critical perspective. Clays and Clay Minerals, 43, p. 540-553.

Frey M. (1987). – Very low-grade metamorphism of clastic sedimentary rocks. In: Low temperature metamorphism, M. Frey (Ed.), Blackie, p. 9-58.

Frey M., Teichmüller M., Teichmüller R., Mullis J., Künzi B., Breitschmid A., Gruner U. et Schwizer B. (1980). – Very low-grade metamorphism in external fparts of the Central Alps: Illite cristallinity, coal rank and fluid inclusion data. Eclogae Geologicae Helvetiae, 73, p. 173-203.

Garcia-Lopez S., Covadonga B. Bastida F. et Sarmiento G.N. (1997). – Simultaneous use of thermal indicators to analyse the transition from diagenesis to metamorphism : an example from the Varisan Belt of northwest Spain. Geological Magazine, 134, p. 323-334.

Kübler B. (1967). – La cristallinité de l’illite et les zones tout à fait supérieures de métamorphisme. In: Colloque sur les étages tectoniques, J. P. Schaer, Neuchâtel, p. 105-122.

Kübler B., Jaboyedoff M. (2000). – Illite crystallinity. Earth and Planetary Sciences, 331, p. 75-89.

Merriman R.J. et Peacor D.R. (1999). – Very low-grade metapelites : Mineralogy, microfabrics and measuring reaction progress. In: M. Frey et D. Robinson (Eds) Low-grade metamorphism, Blackwell Science Ltd, p. 10-60.

Robinson D. (1987). – Transition from diagenesis to metamorphism in extensional and collision settings. Geology, 15, p. 866-869.

Vidal O., T. Parra et F. Trotet (2001). – A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 degrees to 600°C, 1 to 25 kb range. American Journal of Science, 301, p. 557-592.

von Engelhardt W. (1967). – Interstitial solutions and diagenesis in sediments. In: Developments in sedimentology, G. Larsen et J.C. Chilligat (Eds), Elsevier, p. 503-521.

Winkler H.G.F. (1974). – Petrogenesis of metamorphic rocks, Springer-Verlag, 320 p.


Fusion partielle, extraction des liquides et différenciation de la croûte continentale : l’exemple du Massif central français (V. Gardien)

Arzi A.A. (1978). – Critical phenomena in the rheology of partially melted rocks. Tectonophysics, 44, p. 173-184.

Barraud J. (2001). – La ségrégation et la migration des liquides de fusion lors de la déformation des migmatites : modélisation analogique, numérique et exemple de terrain. Thèse Université J. Fourrier, Grenoble, 146 p.

Barraud J., Gardien V., Allemand P., Grandjean P.,(2001). – Analog modeling of melt segregation and migration during deformation. Physics and Chemistry of the Earth., 26, p. 317-323.

Brown M., Averkin Y.A., McLellan E.L., Sawyer E.W. (1995). – Melt segregation in migmatites. Journal of Geophysical Research, 100 (B8), p. 15,655–15,679.

Burg, J.P., Matte, P. (1978). – A cross section through the French Massif central and the scope of its variscan geodynamic evolution. Z. Dtsch. Geol. Ges., Stuttgart, 109, p. 429-460.

Caron J.M., Gauthier A., Schaaf A., Ulysse J., Wozniak J. (1992). – Comprendre et enseigner la planète Terre. Ophrys, 271 p.

Downes H., Dupuy C., Leyreloup A.F. (1990). – Crustal evolution of the Hercynian belt of Western Europe: evidence from lower crustal xenoliths (French Massif Central). Chemical Geology, 83, p. 209-231.

England P.C., Thompson A.B. (1984). – Pressure–Temperature–time paths of regional metamorphism I. heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25 (4), p. 894-928.

Faure M., Bé Mézème E., Cocherie A., Rossi P., Chemenda A., Boutelier D. (2008). – Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif Central and Massif Armoricain. Tectonics, 27 DOI: 1029/2007TC002115.

Gardien V., Lardeaux J.M., Ledru P., Allemand P., Guillot S. (1997). – Metamorphism during late orogenic extension: insights from the French Variscan belt. Bulletin Société Géologique France, 168 (3), p. 271-286.

Gardien V., Vanderhaeghe O., Arnaud N., Grange M., Cocherie A., Lecuyer C. (2011). – Extrusion of partially molten crust at the transition from thickening to gravitational thinning. Bulletin Société Geologique France, 282 (1), p. 5-24.

Gebelin A., Roger F., Brunel M. (2009). – Syntectonic crustal melting and high-grade metamorphism in a transpressional regime, Variscan Massif central, France. Tectonophysics, 477, p. 229-243.

Laporte D., Watson E.B. (1995). – Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chemical Geology, 124, p. 161-184.

Ledru P., Courrioux G., Dallain C., Lardeaux J.M., Montel J.M., Vanderhaeghe O., Vitel G. (2001). – The Velay dome (FrenchMassif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics, 342 (3-4), p. 207–237.

Ledru P., Costa S., Echtler H. (1994). – Structure. In: Keppie, J.D. (Ed.), Pre-Mesozoic Geology in France and Related Areas. Springer-Verlag, p. 305-323.

Lister J.R. (1989). – Selective withdrawl from a viscous two-layer system. Journal of Fluid Mechanics, 198, p. 231-254.

Malavieille J., Guihot P., Costa S., Lardeaux J.M., Gardien V. (1990). – Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne Upper Carboniferous basin. Tectonophysics, 177, p. 139-149.

Matte P. (1986). – La chaîne Varisque parmi les chaînes paléozoïques péri-atlantiques, modèle d’évolution et position des grands blocs continentaux au Permien-Carbonifère. Bulletin de la Société Géologique de France 328, p. 9-21.

Montel J.M., Marignac C., Barbey P., Pichavant M. (1992). – Thermobarometry and granite genesis: the Hercynian low-P, high T Velay anatectic dome (French Massif Central). Journal of Metamorphic. Geology, 10, p. 1-15.

Pin C., Dupuy C., Peterlongo J.M. (1982). – Répartition des terres rares dans les roches volcaniques basiques dévono-dinantiennes du Nord-Est du Massif central. Bulletin Société Géologique de France, 7, p. 669-676.

Rabinowicz M., Vigneresse J.L. (2004). – Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental crust. Journal of Geophysical Research 109, p. B04407.

Ricard Y., Bercovici D., Schubert G. (2001). – A two-phase model for compaction and damage. 2. Application to compaction, deformation, and the role of interfacial surface tension. Journal of Geophysical Research, 106, p. 8907-8924.

Rolin P., Stussi J.M. (1991). – Décrochements intracrustaux et intrusions granitiques carbonifères dans le Morvan (Massif Central français). Bulletin de la Société Géologique de France, (162), p.121-128.

Rushmer T. (1995). – An experimental deformation study of partially molten amphibolite: application to low-melt fraction segregation. Journal of Geophysical research, 100, p. 15681-15695.

Rutter E.H., Neumann D.H. (1995). – Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas. Journal of Geophysical Research 100, p. 15697-15715.

Sawyer E.W. (2001). – Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. Journal of Metamorphic Geology, 19 (3), p. 291-309.

Spear F.S. (1993). – Metamorphic phase equilibria and pressure-temperature time paths. Mineralogy Society of America, Washington, D.C., 799 p.

Stevens G., Clemens J.D. (1993). – Fluid-absent melting and the roles of fluids in the lithosphere-A slanted summary. Chemical Geology, 108, p. 1-17.

Stevenson D.J. (1989). – Spontaneous small scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters, 16, p. 1067-1070.

Stussi J.M. (1989). – Granitoid chemistry and associated mineralization in the French Variscan belt. Economic Geology, 84, p. 1363-1381.

Thompson A.B., Connolly J.A.D. (1995). – Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal Geophysical. Research, 100, p. 15565-15579.

Turcotte D.L., Schubert G. (1982). – Geodynamics: applications of continuum physics to geological problems. John Wiley & Sons, New York. 450 p.

Vanderhaeghe O. (2009). – Migmatites, granites and orogény: flow model of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477, p. 119-134.

Vielzeuf D., Holloway J.-R. (1988). – Experimental determination of the fluid-absent melting relations in the politic system. Consequences for crustal differenciation. Contribution to Mineralogy and Petrology, 98, p. 257-276.

Vigneresse J.-L., Barbey P., Cuney M. (1996). – Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. Journal of Petrology, 37, p. 1579-1600.


Le métamorphisme de (ultra) haute pression : deux siècles de débats (G. Godard)

Les références citées sont disponibles in :

Godard G. (2001). – Eclogites and their geodynamic interpretation: a history. Journal of Geodynamics, 32, p. 165-203.

Godard G., Frezzotti M.-L., Palmeri R., Smith D.C. (2011). – Origin of high-pressure disordered metastable phases (lonsdaleite and incipiently amorphized quartz) in metamorphic rocks: geodynamic shock or crystal-scale overpressure? In: Dobrzhinetskaya, L. Cuthbert, S. Faryad, W. (Eds.), Ultrahigh Pressure Metamorphism: 25 years after discovery of coesite and diamond. Elsevier, Amsterdam, p. 125-148.


Métamorphismes extrêmes et refroidissement de la Terre (C. Nicollet)

La bibliographie proposée pour cet article est minimale : les références indiquées ne sont que des exemples dans la nombreuse bibliographie sur le sujet.

Agbossoumonde y., menot r.-p., gulllot s. (2001). – Metamorphic evolution of Neoproterozoic eclogites from south Togo (West Africa). Journal of African Earth Sciences, 33, p. 227-244.

Brown M. (2014). – The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5, p. 553-569.

Bosse V., Ballèvre M., Vidal O. (2002). — Ductile thrusting recorded by the garnet isograd from the blueschist-facies metapelites of the Ile de Groix, Armorican Massif, France. Journal of Petrology, 43, p. 485-510.

Clark C., Fitzsimons I.C.W., Healy D. and Harley S.L. (2011). – How does the continental crust get really hot? Elements, 7, p. 235-240.

Cross C.B., Diener J.F.A. and Fagereng A. (2015). – Metamorphic imprint of accretion and ridge subduction in the Pan-African Damara Belt, Namibia. J. metamorphic Geol., 33, p. 633-648.

Dokukina K.A., Kaulina T.V., Konilov A.N., Mints M.V., Van K.V., Natapov L., Belousova E., Simakin S.G., Lepekhina El. N. (2014). – Archaean to Palaeoproterozoic high- grade evolution of the Belomorian eclogite province in the Gridino area, Fennoscandian Shield: Geochronological evidence. Gondwana Research, 25, p. 585-613.

Galli A., Le Bayon B., Schmidt M.W., Burg J.-P., Caddick M.J., Reusser E. (2011). – Granulites and charnockites of the Gruf Complex: Evidence for Permian ultra-high temperature metamorphism in the Central Alps. Lithos, 124, p. 17-45.

Goncalves P., Nicollet C. and Montel J.M. (2004). – Petrology and in-situ U-Th-Pb monazite geochronology of Ultra-High Temperature metamorphism from the Andriamena mafic unit, north-central Madagascar. Significance of a petrographical PT path in a polymetamorphic context. Journal of Petrology, 45, p. 1923-1957.

Hacker B.R., Gnos E., Ratschbacher L., Grove M., McWilliams M., Sobolev S.V., Wan J., Zhenhan W. (2000). – Hot and Dry Deep Crustal Xenoliths from Tibet. Science, 287, p. 2463-66.

Hawkesworth C., Cawood P., Dhuime B. (2013). – Continental growth and the crustal record. Tectonophysics, 609, p. 651-660

Harley S.L. (1998). – On the occurrence and characterization of ultrahightemperature crustal metamorphism. In: Treloar, P.J., O’Brien, P.J. (Eds.), What Drives Metamorphism and Metamorphic Relations? Geological Society, London, Special Publication, 138, p. 81-107.

Jahn B., Caby R. and Monie P. (2001). – The oldest UHP eclogites of the world: Age of UHP metamorphism, nature of protoliths and tectonic implications. Chemical Geology, 178, p. 143-158.

Johnson T.E. and White R.W. (2011). – Phase equilibrium constraints on conditions of granulite-facies metamorphism at Scourie, NW Scotland. Journal of the Geological Society, London, 168, p. 147-158.

Karson J.A. (2001). – Oceanic crust when earth was young. Science, 292, p. 1076-7.

Kelsey D.E., Hand M. (2015). – On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6, p. 311-356.

Lardeaux J.M. (2014a). – Deciphering orogeny: a metamorphic perspective. Examples from European Alpine and Variscan belts Part I: Alpine metamorphism in the western Alps. A review. Bull. Soc. géol. France, 185, p. 93-114.

Lardeaux J.M. (2014b). – Deciphering orogeny: a metamorphic perspective Examples from European Alpine and Variscan belts Part II: Variscan metamorphism in the French Massif Central–A review. Bull. Soc. géol. France, 185, p. 281-310.

Martin H. (1986). – Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, p. 753-756.

Maruyama S., Liou J., and Terabayashi M. (1996). – Blueschists and eclogites of the world and their exhumation. International Geology Review, 38, p. 490-596.

Möller A., Appel P., Mezger K., Schenk V. (1995). – Evidence for a 2 Ga Subduction Zone: Eclogites in the Usagaran Belt of Tanzania. Geology, 23, p. 1067-1070.

Pease V., Percival J., Smithies H., Stevens G. and Van Kranendonk M. (2008). – When did plate tectonics begin? Evidence from the orogenic record. GSA Special Papers, 440, p. 199-228.

Redler C., Johnson T.E., White R.W. and Kunz B.E. (2012). – Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy). J. metamorphic Geol., 30, p. 235-25.

Reese C.C., Solomatov V.S., Baumgardner J.R. and Yang W.S. (1999). – Stagnant lid convection in a spherical shell. Physics of the Earth and Planetary Interiors, 116 (1-4), p. 1-7.

Sajeev K., Windley B. F., Hegner E. and Komiya T. (2012). – High-temperature, high-pressure granulites (retrogressed eclogites) in the central region of the Lewisian, NW Scotland: crustal-scale subduction in the NeoArchaean. Gondwana Research, 23, p. 526-538.

Smithies R.H., Champion D.C., and Cassidy K.F., (2003). – Formation of Earth’s Early Archean continental crust. Precambrian Research, 127, p. 89-101.

Stern R.J. (2005). – Evidence from ophiolites, blueschists, and ultrahigh-pressure meta-morphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33, p. 557-560.

Stüve K. (1995). – Thermal buffering effects at the solidus. Implications for the equilibration of partially melted metamorphic rocks. Tectonophysics, 248, p. 39-51.

Pownall J.M., Hall R., Armstrong R.A., Forster M.A. (2014). – Earth’s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia. Geology, 42, p. 279-282.

Tsujimori T., Sisson V.B., Liou Juhn G., Harlow G.E., Sorensen S.S. (2006). – Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites Lithos, 92, p. 609-624.

Vielzeuf D., Holloway J.R. (1988). – Experimental determination of the fluid-absent
melting relations in the pelitic system: consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98, p. 257-276.

Vielzeuf D., Clemens J.D., Pin C., Minet E. (1990). Granite, granulites and crustal differentiation. In: Vielzeuf D., Vidal P. (Eds.), Granulites and Crustal Evolution. NATO Scientific Publication. Kluwer Academic Publishers, p. 59-85.

Wolf M.B. and Wyllie P.J. (1994). – Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib. Mineral. Petrol., 115, p. 369-383.


Les apports de l’expérimentation à la modélisation des processus métamorphiques (T. Hammouda)

Akaogi M., Yusa H., Shiraishi K., Suzuki T. (1995). – Thermodynamic properties of a-quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures. J. Geophys. Res. 100, p. 22,337-22,347.

Barrow G. (1893). – On an Intrusion of Muscovite-biotite Gneiss in the South-eastern Highlands of Scotland, and its accompanying metamorphism. Quart. J. Geol. Soc., 49, p. 330-358.

Birch F., LeComte P. (1960). – Temperature-pressure plane for albite composition. Amer. J. Sci., 258, p. 209-217.

Boyd F.R., England J.L. (1960). – Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750°C. J. Geophys. Res., 65, p. 741-748.

Chao E.T.C., Shoemaker E.M., Madsen B.M. (1960). – First natural occurrence of coesite. Science, 132, p. 220-222.

Chemanda A.I., Mattauer M., Malavieille J., Bokun A.N. (1995). – A mechanism for syn-collisional rock exhumation and associated normal faulting: Results from physical modelling. Earth Planet. Sci. Lett., 132, p. 225-232.

Chopin C. (1984). – Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib. Mineral. Petrol., 86, p. 107-118.

Coes L. Jr (1953). – A New Dense Crystalline Silica. Science, 118, p. 131-132.

Daubrée G.A. (1857). – Observations sur le métamorphisme et recherches expérimentales sur quelques-uns des agents qui ont pu le produire. Ann. Mines. 12, p. 289-326.

Eskola P. (1915). – On the relation between chemical and mineralogical composition in the metamorphic rocks of the Orijärvi region. Bull. Comm. Geol. Finlande, 44, p. 1-107 (en finnois), p. 109-145 (en anglais).

Eugster H.P., Wones D.R. (1962). – Stability relations of the ferruginous biotite. annite. J. Petrol., 3, p. 82-125.

Gibbs J.W. (1875, 1877). – On the Equilibrium of Heterogeneous Substances. Trans. Conn. Acad. Arts Sci., 3, p. 108-248, 343-524.

Holland T.J.B. (1980). – The reaction albite = jadeite + quartz determined experimentally in the range 600-1200°C. Amer. Mineral., 65, p. 129-134.

Johannes W. et al., (1971). – An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib. Mineral. Petrol., 32, p. 24-38.

Le Breton N., Thompson A.B. (1988). – Fluid-absent (dehydration) melting of biotite in metapelite in the early stages of crustal anatexis. Contrib. Mineral. Petrol., 99, p. 226-237.

Moore R.O, Gurney J.J. (1985). – Pyroxene solid solution in garnets included in diamond. Nature, 318, p. 553-555.

Ringwood et Major (1967). – The pyroxene-garnet transformation in the Earth’s mantle. Earth Planet. Sci. Lett., 2, p. 255-263.

Robertson E.C., Birch F., MacDonald J.F. (1957). – Experimental determination of jadeite stability relations to 25,000 bars. Amer. J. Sci., 255, p. 115-137.

Sautter V., Haggerty S.E. and Field F. (1991). – Ultradeep (> 300 kilometers) ultramafic xenoliths: Petrological evidence from the transition zone. Science, 168, p. 832-833.

Scambelluri M., Pettke T., van Roermund H.L.M. (2008). – Majoritic garnets monitor deep subduction fluid flow and mantle dynamics. Geology, 36, p. 59-62.

Smith D.C. (1984). – Coesite in clinopyroxene in the Caledonides and its implication for geodynamics. Nature, 310, p. 641-644.

Smyth J.R. and Hatton C.J. (1977). – A coesite-sanidine grospydite from the Roberts Victor kimberlite. Earth Planet. Sci. Lett., 34, p. 284-290.

Stachel T. (2001). – Diamonds from the asthenosphere and the transition zone. Eur. J. Mineral., 13, p. 883-892.

van Roermund H.L.M., Drury M.R. (1998). – Ultrahigh pressure (P>6Gpa) garnet peridotites in western Norway: Exhumation of mantle rocks from more than 185 km. Terra Nova, 10, p. 295-301.

Vielzeuf D., Holloway J.R. (1988). – Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol., 98, p. 257-276.

Wyart J., Sabatier G. (1959). – Transformation des sédiments pélitiques à 800°C et sous une pression d'eau de 1800 bars et granitisation. Bull. Soc. franç. Minéral. Cristal., 82, p. 201-210.

Yoder H.S. Jr (1980). – Experimental mineralogy: achievements and prospects. Bull. Mineral., 103, p. 5-26.

Yoder H.S. Jr (1950). – The jadeite problem (Part I and II). Amer. J. Sci., 248, p. 225-248 ; 312-334.

Pour aller plus loin

Il existe plusieurs ouvrages en anglais qui présentent les techniques expérimentales appliquées aux problèmes des sciences de la Terre, dont ceux de Ulmer et Barnes (1987) et de Holloway et Wood (1988). En langue française, le Réseau Technologique des Hautes Pression du CNRS (http://www.reseauhp.org/) a édité des ouvrages qui, sans être restreints aux sciences de la Terre, présentent l’ensemble des techniques de hautes pressions et leurs applications. On peut aussi citer, également en langue française, l’étude de G. Gohau (1996) sur l’historique des études expérimentales appliquées aux problèmes géologiques.

Gohau G. (1996). – Expériences anciennes sur la formation des roches cristallines du dernier quart du dix-huitième siècle aux années 1850. Travaux du Comité français d'Histoire de la Géologie, COFRHIGEO, 3ème série, T.10, p.101-103. <hal-00933424>.

Holloway J.R., Wood B.J. (1988). – Simulating the Earth. Experimental Geochemistry. Unwin Hyman, London, UK, 205 p.

Ulmer G.C., Barnes H.L. (1987). – Hydrothermal Experimental Techniques. John Wiley and Sons, New-York, 538 p.


À la recherche de l’équilibre perdu (B. Dubacq)

Agard P., Augier R. and Monié P. (2011). – Shear band formation and strain localization on a regional scale: Evidence from anisotropic rocks below a major detachment (Betic Cordilleras, Spain). Journal of Structural Geology, 33, p. 114-131. doi :10.1016/j.jsg.2010.11.011.

Berman R.G. (1991). – Thermobarometry using multi-equilibrium calculations ; a new technique, with petrological applications. The Canadian Mineralogist, 29, p. 833-855.

Bickle M.J. and McKenzie D. (1987). – The transport of heat and matter by fluids during metamorphism. Contributions to Mineralogy and Petrology, 95, p. 384-392. doi : 10.1007/BF00371852.

Bourdelle F., Benzerara K., Beyssac O., Cosmidis J., Neuville D., Brown Gordon E. J. and Paineau E. (2013). – Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges. Contributions to Mineralogy and Petrology, 166, p. 423-434. doi:10.1007/s00410-013-0883-4.

De Andrade V., Ganne J., Dubacq B., Ryan C.G., Bourdelle F., Plunder A., Falkenberg G. and Thieme J. (2014). – Retrieving past geodynamic events by unlocking rock archives with μ-XRF and μ-spectroscopy. Journal of Physics: Conference Series, 499, 012012. doi :10.1088/1742-6596/499/1/012012.

Dubacq B., Bickle M.J., Wigley M., Kampman N., Ballentine C.J. and Lollar B.S. (2012). – Noble gas and carbon isotopic evidence for CO2-driven silicate dissolution in a recent natural CO2 field. Earth and Planetary Science Letters, 341-344, 10-19. doi :10.1016/j.epsl.2012.05.040.

Giletti B. and Anderson T. (1975). – Studies in diffusion, II. Oxygen in phlogopite mica. Earth and Planetary Science Letters, 28, p. 225-233. doi :10.1016/0012-821X(75)90232-0.

Lanari P., Vidal O., De Andrade V., Dubacq B., Lewin E., Grosch E.G. and Schwartz S. (2014). – XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Computers & Geosciences, 62, p. 227-240. doi :10.1016/j.cageo.2013.08.010.

Martin A.J. (2009). – Sub-millimeter Heterogeneity of Yttrium and Chromium during Growth of Semipelitic Garnet. Journal of Petrology, 50, p. 1713-1727. doi : 10.1093/petrology/egp050.

Neuzil C.E. (1994). – How permeable are clays and shales ? Water Resources Research, 30, p. 145-150. doi : 10.1029/93WR02930.

Plunder A., Agard P., Dubacq B., Chopin C. and Bellanger M. (2012). – How continuous and precise is the record of P–T paths? Insights from combined thermobarometry and thermodynamic modelling into subduction dynamics (Schistes Lustrés, W. Alps). Journal of Metamorphic Geology, 30, p. 323-346. doi : 10.1111/j.1525-1314.2011.00969.x.

Shannon R.D. (1976). – Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32, p. 751-767. doi : 10.1107/S0567739476001551.


Techniques, méthodes et outils pour la quantification du métamorphisme (N. Riel et P. Lanari)

Barrow G. (1912). – On the geology of the lower deeside and the southern highland border. Proc. Geol. Assoc., 23, p. 268-273

Berman R.G. (1988). – Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, p. 445-522.

De Andrade V., Vidal O., Lewin E., O’Brien P., & Agard P. (2006). – Quantification of electron microprobe compositional maps of rock thin sections: An optimized method and examples. Journal of Metamorphic Geology, 24, p. 655-668.

De Capitani C., & Brown T. (1987). – The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochimica Cosmochimica Acta, 51, p. 2639-2652.

Eskola P. (1915). – Om sambandet mellan kemimsk och mineralogisk sammansättning hos orijärvitraktens metamorfa bergarter. Bull. Comm. geol. Finl., 44.

Gibbs J.W. (1906). – The scientific papers of J.W. Gibbs. I: Thermodynamics. Reprinted by Dover (1961), New York, 434 p.

Holland T.J.B. and Powell R. (1998). – An internally-consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology, 16, p. 309-344.

Lanari P., Riel N., Guillot S., Vidal O., Schwartz S., Pêcher A., & Hattori K., (2013). – Deciphering high-pressure metamorphism in collisional context using microprobe-mapping methods: application to the Stak eclogitic massif (NW Himalaya). Geology, 41, p. 111-114.

Lanari P., Vidal O., De Andrade V., Dubacq B., Lewin E., Grosch E. G. & Schwartz S. (2014). – XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Computers and Geosciences, 62, p. 227-240.


Dater les événements métamorphiques : exemple du chronomètre Th-U-Pb dans la monazite (A. Didier & V. Bosse)

Bosse V., Féraud G., Ballèvre M., Peucat J.J. and Corsini M. (2005). – Rb-Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): Implications for closure mechanisms in isotopic systems. Chem. Geol., 220, p. 21-45.

Cherniak D.J., Watson B.E., Grove M., Harrison T.M. (2004). – Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta, 68, p. 829-840.

Chopin C., Maluski H. (1980). – 40Ar-39Ar dating of high pressure metamorphic micas from the Gran Paradisio Area (Western Alps): evidence against the blocking temperature concept. Contrib. Miner. Petr., 74, p. 109-122.

Copeland P., Parish R., Harrison T.M. (1988). – Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature, 333, p. 760-763.

Didier A., Bosse V., Boulvais P., Bouloton J., Paquette J.L., Montel J.M., Devidal J.L. (2013). – Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib. Mineral. Petrol. 165, p. 1051-1072.

Didier A., Bosse V., Cherneva Z., Gautier P., Georgieva M., Paquette J.L., Gerdjikov I. (2014). – Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem. Geol.381, p. 206-222.

Didier A., Putlitz B., Baungartner L., Bouvier A.S. (2015). – Monazite standards for SIMS δ18O analysis. Goldschmidt 2015, Pragues.

Dahl P.S. (1997). – A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochrology. Earth Planet. Sci. Lett., 150, p. 277-290.

Dodson M.H. (1973). – Closure temperature in cooling geochronological and petrological systems. Contrib. Miner. Petrol., 40, p. 259-274.

Gardés E., Jaoul O., Montel J.M., Seydoux-Guillaume A.M., Wirth R. (2006). – Pb diffusion in monazite: an experimental study of Pb2++Th4+↔2Nd3+ interdiffusion. Geochim. Cosmochim. Acta, 70, p. 2325-2336.

Hetherington C.J., Harlov D.E. (2008). – Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chenistry. Am. Mineral, 93, p. 806-820.

Jäger E. (1967). – Die Bedeutung der Biotit Alterswerte. In: Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen (Eds E. Jäger, E. Niggli and E. Wenk). Beitr. Geol. Karte Schweiz, NF, 134, p. 28-31.

Jäger E. (1979). – Introduction to geochronology. In: Jäger E, Hunziker JC (Eds.), Lectures in Isotopte Geology, Springer-Verlag, Berlin, p.1-12̈

Köppel, V. & Grünenfelder, M. (1975). – Concordant U-Pb ages of monazite and xenotime from the Central Alps and the timing of the high temperature Alpine metamorphism, a preliminary report, SMPM, 55, p. 129-132.

Mezger, K., Rawnsley, C. M., Bohlen, S. R. and Hanson, G. N. (1991). – U-Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high-grade metamorphism and cooling histories, Adirondacks Mts, New York. J. Geol., 99, p. 415-428.

Parrish R. (1990). – U–Pb dating of monazite and its application to geological problems. Can. J. Earth Sci., 27, p. 1431-1450.

Poitrasson F., Chenery S., Bland D.J. (1996). – Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet. Sci. Lett., 145, p. 79-96.

Purdy J. and Jäger E. (1976). – K-Ar ages on rock-forming minerals from the central Alps. Mem. Instituti Geol. Mineral. Uni. Padova, 30, 31 p.

Pyle J.M., Spear F.S., Rudnick R.L., McDonough W.F. (2001). – Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J. Petrol., 42, p. 2083-2107.

Rubatto D., Putlitz B., Gauthiez-Putallaz L., Crépisson C., Buick I.S., Zheng Y.F. (2014). – Measurement of in-situ oxygen isotope ratios in monazite by SHRIMP ion microprobe: Standards, protocols and implications. Chemical Geology, 380, p. 84-96.

Seydoux-Guillaume A.M., Paquette J.L., Wiedenbeck M., Montel J.M., Heinrich W. (2002). – Experimental resetting of the U–Th–Pb systems in monazite. Chem. Geol., 191, p. 165-181.

Steck A. and Hunziker J.C. (1994). – The Tertiary structural and thermal evolution of the Central Alps ± compressional and extensional structures in an orogenic belt. Tectonophysics, 238, p. 229-254.

Villa I.M. (1988). – Isotopic closure. Terra Nova, 10, p. 42-47.


Les marqueurs des évaporites dans la formation des gemmes métamorphiques ( G. Giuliani et al.)

Banks D., Giuliani G., Yardley B.W.D., Cheilletz A. (2000). ‑ Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineralium Deposita, 35, p. 699-713.

Branquet Y., Laumonier B., Cheilletz A., Giuliani G. (1999). – Emeralds in the Eastern Cordillera of Colombia: Two tectonic settings for one mineralization. Geology, 27, p. 597-600.

Branquet Y., Giuliani G., Cheilletz A., Laumonier B. (2015). – Colombian emeralds and evaporites: tectono-stratigraphic significance of a regional emerald-bearing evaporitic breccia level. In: Proceedings 13th SGA biennal Meeting, 24-27 August 2015, Nancy, France. Vol. 4, p. 1291- 1294.

Cheilletz A., Féraud G., Giuliani G., Rodriguez C.T. (1994). – Time-pressure-temperature formation of Colombian emerald: an 40Ar/39Ar laser-probe and fluid inclusion-microthermometry contribution. Economic Geology, 89, p. 361-380.

Chukrov F.V., Vinogradov V.I., Ermilova L.P. (1970). – On the isotopic sulfur composition of some Precambrian strata. Mineralium Deposita, 5, p. 209-222.

Faryad S.W. (2002). – Metamorphic conditions and fluid compositions of scapolite-bearing rocks from the lapis lazuli deposit of Sar e Sang, Afghanistan, Journal of Petrology, 43, p. 725-747.

Feneyrol J., Ohnenstetter D., Giuliani G., Fallick A.E., Rollion-Bard Cl., Robert J.-L., Malisa E. (2012). – Evidence of evaporites in the genesis of the vanadian grossular 'tsavorite' deposit in Namalulu, Tanzania. Canadian Mineralogist, 50, p. 745-769.

Feneyrol J., Giuliani G., Ohnenstetter D., Fallick A.E., Martelat J.M., Monié P., Dubessy C., Rollion-Bard Cl., Le Goff E., Malisa E., Rakotondrazafy A.F.M., Pardieu V., Kahn T., Ichang'i, D., Venance E., Voarintsoa N.R., Ranatsenho M., Simonet C., Omito E., Nyamai C., Saul M. (2013). – Worldwide tsavorite deposits: new aspects and perspectives. Ore Geology Reviews, 53, p. 1-25.

Garnier V., Ohnenstetter D., Giuliani G. (2004). – L'aspidolite fluorée : rôle des évaporites dans la genèse des marbres de Nangimali (Azad-Kashmir, Pakistan). C.R. Géosciences, 336, p. 1245-1253.

Garnier V., Giuliani G., Ohnenstetter D., Fallick A.E., Dubessy J., Banks D., Hoàng Quang V., Lhomme Th., Maluski H., Pêcher A., Bakhsh K.A., Pham Van L., Phan Trong T., Schwarz D. (2008). – Marble-hosted ruby deposits from central and Southeast Asia: towards a new genetic model. Ore Geology Reviews, 34, p. 169-191.

Giuliani G., Sheppard S.M.F., Cheilletz A., Rodriguez C.T. (1992). – Contribution de l'étude des phases fluides et de la géochimie isotopique 18O/16O, 13C/12C à la genèse des gisements d'émeraude de la Cordillère Orientale de la Colombie. C.R. Acad. Sci., 314, p. 269-274.

Giuliani G., France-Lanord Ch., Cheilletz A., Coget P., Branquet Y., Laumonier B. (2000). – Sulfate reduction by organic matter in Colombian emerald deposits: chemical and stable isotope (C, O, H) evidence. Economic Geology, 95, p. 1129-1153.

Giuliani G., Dubessy J., Banks D., Hoang Quang V., Lhomme T., Pironon J., Garnier, V., Phan Trong T., Pham Van L., Ohnenstetter D., Schwarz D. (2003). – CO2-H2S-COS-S8-AlO(OH)-bearing fluid inclusions in ruby from marble-hosted deposits in Luc Yen area, North Vietnam. Chemical Geology, 194, p. 167-185.

Giuliani G., Dubessy J., Banks D., Lhomme Th., Ohnenstetter D. (2015). – Fluid inclusions in ruby from Asian marble deposits: genetic implications. European Journal of Mineralogy, 27, p. 393-404.

Kulke H.G., Schreyer W. (1973). – Kyanite-talc schist from Sar e Sang, Afghanistan. Earth and Planetary Science Letters, 18, p. 324-328.

Lacassagne V., Besseda C., Florian P., Bouvet S., Olliver B., Coutures J.-P., Massiot D. (2002). – Structure of high temperature NaF-AlF3-Al2O3 melts: a multinuclear NMR study. Journal of Physics and Chemistry, 106, p. 1862-1868.

Machel H.G., Krouse H.R., Sassen R. (1995). – Products and distinguishing criteria of bacterial and thermochemical sulphate reduction. Applied geochemistry, 10, p. 373-389.

Ottaway T.L., Wicks F.J., Bryndzia L.T., Kyser T.K., Spooner E.T.C. (1994). – Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature, 369, p. 552-554.

Pokrovski G.S., Dubrovinsky L.S. (2011). – The S3- ion is stable in geological fluids at elevated temperatures and pressures. Science, 331, p. 1052-1054.

Pokrovski G.S., Dubessy J. (2014). – Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids. Earth and Planetary Science Letters, 411, p. 298-309.

Reinen D., Lindner G.G. (1999). – The nature of chalcogen colour centres in ultramarine-type solids. Chemical Society Review, 28, p. 75-84.

Roedder E. (1963). – Studies of fluid inclusions II: freezing data and their interpretation. Economic Geology, 58, p. 163-211.

Samson I., Anderson A., Marshall D. (2003). – Fluid inclusions: Analysis and interpretation. In Series Editor R. Raeside, Mineralogical Association of Canada, Short Course Series 32, Wolfville, Canada, 374 p.

Schreyer W., Abraham K. (1976). – Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit. Contributions to Mineralogy and Petrology, 59, p. 111-130.

Truche L., Bazarkina E.F., Barré G., Thomassot E., Berger G., Dubessy J., Robert P. (2014). – The role of S3- ion in thermochemical sulphate reduction: geological and geochemical implications. Earth and Planetary Science Letters, 396, p. 190-200.

Yardley B., Cleverley J.S. (2013). – The role of metamorphic fluids in the formation of ore deposits. In: Jenkin G.R.T., Lusty P.A.J., McDonald I., Smith M.P., Boyce A.J., Wilkinson J.J. (Eds), Ore deposits in an evolving Earth. Geological Society of London, Special Publications, 393, http://dx.doi.org/10.1144/SP393.5.


Piégeage et libération des halogènes dans les métagabbros océaniques ( C. Nicollet et F. Cattani)

Coogan L.A., Wilson R.N., Gills K.M. and MacLeod C.J. (2001). – Nearsolidus evolution of oceanic gabbros: Insights from amphibole geochemistry. Geochimica and Cosmochimica Acta, 65, p. 4339-4357.

Garofalo P.S. (2011). – The composition of Alpine marine sediments (Bündnerschiefer Formation, W Alps) and the mobility of their chemical components during orogenic metamorphism. Lithos, 128-131, p. 55-72.

Gillis K.M., Coogan L.A. and Chaussidon M. (2003). –Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth and Planetary Science Letters, 213, p. 447-462.

Hattori K.H. and Guillot S. (2007). – Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones. Geochemistry Geophysic Geosystems, DOI:10.1029/2007GC001594.

Lafay R., Deschamps F., Schwartz S., Guillot S., Godard M., Debret B. and Nicollet C. (2013). – High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps. Chemical Geology, 343, p. 38-54.

Straub S.M. and Layne G.D. (2003). – The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: Implications for volatile recycling in subduction zones. Geochimica and cosmochimica Acta, 67, p. 4179-4203.


Rôle des fluids dans le métamorphisme (Ph. Goncalves et C. Durand)

Austrheim A. (1987). – Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth and Planetary Science Letters, 81, p. 221-232.

Daniel G. et al. (2011). – Changes in effective stress during the 2003–2004 Ubaye seismic swarm, France. Journal of Geophysical Research, 116, B01309.

Durand C. (2006). – Circulations fluides, transferts de matière et évolution minéralogique entre deux réservoirs à géochimie contrastée. Thèse de doctorat, Univesité de Franche-Comté, Besançon, 313 p.

Durand C. et al. (2015). – Chemical mass transfers in shear zone and metacarbonate xenoliths: Comparison of four mass balance approaches. European Journal of Mineralogy, 14.

Goncalves P. et al. (2011). – Thermodynamic modeling and thermobarometry of metasomatized rocks. In: Metasomatism and the chemical transformation of rock, eds. Daniel E. Harlov and Håkon Austrheim Lecture Notes in Earth System Sciences Springer, 806 p.

Goncalves P. et al. (2012). – Role of chemical processes on shear zone formation : an example from the Grimsel metagranodiorite (Aar massif, Central Alps). Journal of Metamorphic Geology, 30, p. 703-722.

Leclère H. et al. (2015). Development and maintenance of fluid overpressures in crustal fault zones by elastic compaction and implications for earthquake swarms. Journal of Geophysical Research, Solid Earth. 120, B011759.

Oliot E. et al. (2010). – Role of plagioclase and reaction softening in a metagranite shear zone at mid-crustal conditions (Gotthard Massif, Swiss Central Alps). Journal of Metamorphic Geology, 28, p. 849-871.

Putnis A. and Austrheim A. (2010). Fluid-induced processes: metasomatism and metamorphism. Geofluids, 10, p. 254-269.

Roberts M. et al. (2000). – Petrogeneis of mafic to felsic plutonic rock associations: the calc- alcaline Quérigut Complex, French Pyrenees. Journal of Petrology, 41, p. 809-844.

Sibson R. H. (1990). – Rupture nucleation on unfavorably oriented faults. Bulletin of Seismological Society of America, 80, p. 1580-1604.



facebook SGF  twitter SGF  youtube SGF  linkedin SGF  instagram SGF