360 F 30048671 zo6yATKHPV2qPQxEoqfbtDsRVpj9UNlK

facebooklinkedintwitter youtube
  • Le fonds

Rifting actif et rifting passif : des concepts désuets ? (S. Vicente de Gouveia et al.)

Burke K. and Dewey J. F. (1973). – Plume-Generated Triple Junctions: Key Indicators in Applying Plate Tectonics to Old Rocks. The Journal of Geology, 81(4), 406-433.

Frizon de Lamotte D., Fourdan B., Leleu S., Leparmentier F., de Clarens P. (2015) –Style of rifting and the stages of Pangea breakup. Tectonics, 34(5), 1009-1029.

GreffLefftz M., Robert B., Besse J., Frizon de Lamotte D., Vicente de Gouveia S. (2017). – Dynamic topography and lithospheric stresses since 400 Ma. Geochem. Geophys. Geosyst., 18(7), 2763-2700.

Larson R.L. (1991). – Geological consequences of superplumes. Geology, 19, 963-966.

McKenzie D. (1978). – Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25-32.

O’Neill C., Müller D., Steinberger B. (2005). – On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst., 6(4), https://doi.org/10.1029/2004GC000784

Vicente de Gouveia S. (2017). – Influence des points chauds sur l’initiation (rifting) et l’évolution des bassins sédimentaires. Intérêt pétrolier. Thèse Université Sorbonne Paris Cité.

 

 

Le système de rift triasique de l’Atlantique Central et son enregistrement sédimentaire (S. Leleu)

Buck W.R. (1991). – Modes of continental lithospheric extension. J. Geoph. Res., 96(B12), 20161-20178.

Coltice N., Phillips B.R., Bertrand H., Ricard Y., Rey P. (2007). – Global warming of the mantle at the origin of flood basalts over supercontinents. Geology, 35(5), 391-394.

Kent D.V., Olsen P.E., Witte W.K. (1995). – Late Triassicearliest Jurassic geomagnetic polarity sequence and paleolatitudes from drill cores in the Newark rift basin, eastern North America. J. Geoph. Res., 100 (8B), 14965-14998

Leleu S. and Hartley A.J. (2010). – Controls on the stratigraphic development of the Triassic Fundy Basin, Nova Scotia: implications for the tectonostratigraphic evolution of Triassic Atlantic rift basins. In : Geological Society, Special Publication, 167, 437-454

Leleu S. and Hartley A.J. (2016). – Constraints on synrift intrabasinal horst development from alluvial fan and aeolian deposits (Triassic, Fundy Basin, Nova Scotia). In : Geological Society, Special Publication, 468, 1-23. DOI: 10.1144/SP440.8

Leleu S., Hartley A.J., van Oosterhout C., Kennan L., Ruckwied K., Gerdes K. (2016). – Structural, stratigraphic and sedimentological characterisation of a wide rift system: The Triassic rift system of the Central Atlantic Domain. Earth-Science Reviews, 158, 89-124.

Lundin E.R. and Doré A.G. (2005). – NE Atlantic break-up: a re-examination of the Iceland mantle plume model and the Atlantic-Arctic linkage. In: Doré A.G. & Vining B. (eds) Petroleum Geology: North West Europe and Global Perspectives: Geological Society, London, Proceedings of the 6th Conference, 739-754, https://doi.org/10.1144/0060739

Olsen P.E. (1997). – Stratigraphic record of the early Mesozoic Breakup of Pangea in the Laurasia-Gondwana rift system. Annu. Rev. Earth Planet. Sci., 25, 337-401.

Olsen P.E., Kent D.V., Cornet B., Witte W.K., Schlische R.W. (1996). – High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). GSA Bulletin, 106(1), 40-77.

Peron-Pinvidic G., Manatschal G., Minshull T.A., Sawyer D.S. (2007). – Tectonosedimentary evolution of the deep Iberia-Newfoundland margin: Evidence for a complex breakup history. Tectonics, 26(2).

Sahabi M., Aslanian D., Olivet J.-L. (2004). – Un nouveau point de départ pour l’histoire de l’Atlantique central. C.R. Geosciences, 336(12), 1041-1052.

Scribano V., Carbone S., Manuella F.C., Hovland M., Rueslatten H., Johnsen H.K. (2017). – Origin of salt giants in abyssal serpentinite systems. Int. J. Earth Sci., 106(7).

Stolfova K. et Shannon P.M. (2009). – Permo-Triassic development from Ireland to Norway: basin architecture and regional controls. Geol. J., 44(6), 652-676.

Withjack M.O., Schlische R.W., Olsen P.E. (1998). ‑ Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America: An analog for other passive margins. AAPG Bulletin, 82(5A), 817-835.

 

 

Le rifting du Segment Central de l’Atlantique Sud : chronologie des phases tectoniques et évolution paléogéographique (A.-C. Chaboureau et al.)

Altenhofen, S. D. (2013). – Caracterização petrográfica de depósitos carbonáticos lacustres do Grupo Lagoa Feia, Bacia de Campos, Brasil. Monografia. Universidade Federal do Rio Grande do Sul, Porto Alegre.

Arai, M. (2009). – Paleogeografia do Atlântico Sul no Aptiano: um novo modelo a partir de dados micropaleontológicos recentes. Boletim de Geociências da PETROBRAS, 17(2), 331-351.

Arai, M. (2014). – Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective. Brazilian Journal of Geology, 44(2), 339-350.

Aslanian, D., Moulin, M., Olivet, J. L., Unternehr, P., Matias, L., Bache, F., Rabineau, M., Nouzé, H., Klingelheofer, F., Contrucci, I., Labails, C. (2009). – Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 468(1), 98-112.

Asmus, H. E. & Ponte, F. C. (1973). – The Brazilian marginal basins. In: Nairn, E.A.M. & Stelhi, F.G (Eds.), The South Atlantic, Plenum Press, New-York, 87-133.

Assine, M. L., Quaglio, F., Warren, L. V., & Simões, M. G. (2016). – Comments on paper by M. Arai "Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: a paleontological perspective". Brazilian Journal of Geology, 46(1), 3-7.

Bate, R.H. (1999). – Non-marine ostracod assemblages of the pre-salt rift basins of West Africa and their role in sequence stratigraphy. In: Cameron, N.R., Bate, R.H., Clure, V.S. (Eds.), The Oil and Gas Habitats of the South Atlantic, Geological Society, London, Special Publications, 153, 283-292.

Bengston, P., Koutsoukos, E.A., Kakabadze, M.V., Zucon, M.H. (2007). – Ammonite and foraminiferal biogeography and the opening of the Equatorial Atlantic Gateway. In: First International Palaeobiogeography Symposium, Paris, Abstracts, p. 12.

Blaich, O. A., Faleide, J. I., & Tsikalas, F. (2011). – Crustal breakup and continentocean transition at South Atlantic conjugate margins. Journal of Geophysical Research: Solid Earth, 116, B01402

Braccini, E., Denison, C.N., Scheevel, J.R., Jeronimo, P., Orsolini, P., Barletta, V. (1997). – A revised chrono-lithostratigraphic framework for the pre-Salt (Lower Cretaceous) in Cabinda, Angola. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 21, 125-151.

Brognon, G. P., & Verrier, G. R. (1966). – Oil and geology in Cuanza Basin of Angola. AAPG Bulletin, 50(1), 108-158.

Brune, S., Heine, C., Pérez-Gussinyé, M., & Sobolev, S. V. (2014). – Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 5, 4014.

de Carvalho, M. D., Praça, U. M., da Silva-Telles Jr, A. C., Jahnert, R. J., & Dias, J. L. (2000). – Bioclastic carbonate lacustrine facies models in the Campos Basin (Lower Cretaceous), Brazil. In: Gierlowski-Kordesch, E.H., Kelts, K.R. (Eds.), Lake Basins Through Space and Time: American Association of Petroleum Geology. Studies in Geology, 46, 245–256.

Cazier, E. C., Bargas, C., Buambua, L., Cardosa, S., Ferreira, H., Lopez, A., Shinol, J. (2014). – Petroleum geology of Cameia field, deepwater pre-salt Kwanza Basin, Angola, West Africa. In: International Conference & Exhibition.

Chaboureau, A. C. (2012). – Interactive comment on “The Aptian evaporites of the South Atlantic: a climatic paradox? Climate of the Past, 8(3), 1047-1058.

Chaboureau, A. C., Guillocheau, F., Robin, C., Rohais, S., Moulin, M., & Aslanian, D. (2013). – Paleogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: Paleotopographic and geodynamic implications. Tectonophysics, 604, 191-223.

De Ruiter, P. A. C. (1979). – The Gabon and Congo basins salt deposits. Economic Geology, 74(2), 419-431.

Dias J.L. (1998). – Análise sedimentológica e estratigrafia do Andar Aptiano em parte da margem leste do Brasil e no platô das Malvinas - Considerações sobre as primeiras incursões e ingressões marinhas do Oceano Atlântico Meridional. Ph.D. thesis, Porto Alegre, Brazil, Universidade Federal do Rio Grande do Sul, 208pp.

Dias, J. L. (2005). – Tectônica, estratigrafia e sedimentação no Andar Aptiano da margem leste brasileira. Boletim de Geociências da PETROBRAS, 13, 7-25.

Doyle, J. A., Jardiné, S., & Doerenkamp, A. (1982). – 'Afropollis', a new genus of early angiosperm pollen, with notes on the cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. Bull Cent Rech Explor Prod Elf-Aquitaine, 6, p. 39-117.

Freitas, J. T. R. (2006). – Ciclos deposicionais evaporíticos da Bacia de Santos: uma análise cicloestratigráfica a partir de 2 poços e de traços de sísmic. Ph.D. thesis, Porto Alegre, Brazil, Universidade Federal do Rio Grande do Sul. 168pp.

Gallo, V. (2009). – A paleoictiofauna marinha das bacias marginais brasileiras. In: Congresso Brasileiro de Paleontologia 21, Belèm, p.266.

Grosdidier, E., Braccini, E., Dupont, G., Moron, J.M. (1996). – Biozonation du Crétacé Inférieur non marin des bassins du Gabon et du Congo. In: Jardiné, S., de Klasz, I., Debenay, J.P. (Eds.), Géologie de l'Afrique et de l'Atlantique Sud. Bulletin des Centres Recherches Exploration-Production Elf Aquitaine, Mémoire, 16, p. 67-82.

Hardie, L. A. (1990). – The roles of rifting and hydrothermal CaCl 2 brines in the origin of potash evaporites; an hypothesis. American Journal of Science, 290(1), 43-106.

Harris, N. B. (2000). – Evolution of the Congo rift basin, west Africa: An inorganic geochemical record in lacustrine shales. Basin Research, 12(3-4), 425-445.

Heine, C., Zoethout, J., & Müller, R. D. (2013). – Kinematics of the South Atlantic rift. Solid Earth, 4, 215-253.

Huismans, R. S., & Beaumont, C. (2008). – Complex rifted continental margins explained by dynamical models of depth-dependent lithospheric extension. Geology, 36(2), 163-166.

Huismans, R., & Beaumont, C. (2011). – Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473(7345), 74-78.

Karner, G. D., & Driscoll, N. W. (1999). – Tectonic and stratigraphic development of the West African and eastern Brazilian margins; insights from quantitative basin modelling. In: Cameron, N.R., Clure, V.S. (Eds.), The Oil and Gas Habitats of the South Atlantic. Geological Society, London, Special Publications, 153, 11-40.

Karner, G.D., Driscoll, N.W., & Barker, D.H.N. (2003). – Syn-rift region subsidence across the West African continental margin; the role of lower plate ductile extension. In: Arthur, T.J., MacGregor, D.S., Cameron, N.R. (Eds.), Geological Society, London, Special Publications, 207, 105-129.

J. Kusznir, N & D. Karner, G. (2007). – Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: Application to the Woodlark, Newfoundland and Iberia margins. In: Karner, G. D., Manatschal, G. & Pinheiro, L. M. (Eds.), Imaging, Mapping, and Modelling Continental Lithosphere Extension and Breakup, Geological Society, London, Special Publications, 282, 389-419.

Koutsoukos, E. A., & Bengtson, P. (1993). – Towards an integrated biostratigraphy of the upper Aptian–Maastrichtian of the Sergipe Basin, Brazil. Documents du Laboratoire de Géologie de Lyon, 125, 241-262.

Lavier, L.L., & Manatschal, G. (2006). – A mechanism to thin the continental lithosphere at magma-poor margins. Nature, 440, 324-328.

Lentini, M.R., Fraser, S.I., Sumner, H.S., & Davies, R.J. (2010). – Geodynamics of the central South Atlantic conjugate margins; implications for hydrocarbon potential. Petroleum Geoscience, 16, 217-229.

McKenzie, D. (1978). – Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25-32

Meister, E.M., & Aurich, N. (1971). – Geologic outline and oil fields of Sergipe Basin, Brazil. American Association of Petroleum Geologists Bulletin, 55, 353-353.

Mohr, B. A., & Eklund, H. (2003). – Araripia florifera, a magnoliid angiosperm from the Lower Cretaceous Crato Formation (Brazil). Review of Palaeobotany and Palynology, 126(3), 279-292.

Mohriak, W.U., Lira Rabelo, J., De Matos, R.D., & De Barros, M.C. (1995). – Deep seismic reflection profiling of sedimentary basins offshore Brazil: Geological objectives and preliminary results in the Sergipe Basin. Journal of Geodynamics, 20, 515-539.

Moreira, J.L.P., Madeira, C.V., Gil, J.A., & Machado, M.A.P. (2007). – Bacia de Santos. Boletim de Geociencias da Petrobras, 15, 531-549.

Moulin, M., Aslanian, D., Olivet, J., Contrucci, I., Matias, L., Geli, L., Klingelhoefer, F., Nouze, H., Rabineau, M., Labails, C., Rehault, J., & Unternehr, P. (2005). – Geological constraints on the evolution of the Angolan margin based on reection and refraction seismic data (ZaiAngo Project). Geophysical Journal International, 162, 793-810.

Moura, J.A. (1972). – Algumas especies e subespecies novas de ostracodes da bacia Reconcavo/Tucano. Boletim Tecnico da Petrobras, 15, 245-263.

Neto, O. C., Lima, W. S., & Cruz, F. G. (2007). – Bacia de Sergipe-Alagoas. Boletim de Geociências da Petrobras, 15(2), 405-415.

Nunn, J. A., & Harris, N. B. (2007). – Subsurface seepage of seawater across a barrier: A source of water and salt to peripheral salt basins. Geological Society of America Bulletin, 119(9-10), 1201-1217.

Pedentchouk N, Sumner W, Tipple B, & Pagani M. (2008). – δ13 C and δ2 652  H compositions of n-alkanes from  modern angiosperms and conifers: An experimental set up in central Washing State, USA. Organic Geochemistry, 39, 1066-1071.

Peron-Pinvidic, G., Manatschal, G. & Osmundsen, P.T. (2013). – Structural comparison of archetypal Atlantic margins: a review of observations and concepts. Marine and Petroleum Geology, 43, 21-47

Peron-Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J.-M., Haupert, I., & Unternehr P. (2017). – Unravelling the along-strike variability of the Angola–Gabon rifted margin: a mapping approach. In: Sabato Ceraldi T., Hodgkinson, R., A., & Backe, G. (Eds.), Petroleum Geoscience of the West Africa Margin, Geological Society, London, Special Publications, 438, 49-76.

Poropat, S., & Colin, J.-P. (2012). – Early Cretaceous ostracod biostratigraphy of eastern Brazil and western Africa: An overview. Gondwana Research., 22, 772-798.

Rangel, H.D., & Carminatti, M. (2000). – Rift lake stratigraphy of the Lagoa Feia Formation, Campos Basin, Brazil. In: Gierlowski-Kordesch, E.H., & Kelts, K.R. (Eds.), Lake basins through space and time. American Association of Petroleum Geology Studies in Geology, 46, 225-244.

Sabato Ceraldi, T., & Green, D. (2017). – Evolution of the South Atlantic lacustrine deposits in response to Early Cretaceous rifting, subsidence and lake hydrologyIn: Sabato Ceraldi T., Hodgkinson, R., A., & Backe, G. (Eds.), Petroleum Geoscience of the West Africa Margin, Geological Society, London, Special Publications, 438.

PérezDíaz, L., & Eagles, G. (2017). – A new highresolution seafloor age grid for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(1), 457-470.

Teboul, P. A., Kluska, J. M., Marty, N. C., Debure, M., Durlet, C., Virgone, A., & Gaucher, E. C. (2017). – Volcanic rock alterations of the Kwanza Basin, offshore Angola-Insights from an integrated petrological, geochemical and numerical approach. Marine and Petroleum Geology, 80, 394-411.

Tedeschi, L. R., Jenkyns, H. C., Robinson, S. A., Sanjinés, A. E., Viviers, M. C., Quintaes, C. M., & Vazquez, J. C. (2017). – New age constraints on Aptian evaporites and carbonates from the South Atlantic: Implications for Oceanic Anoxic Event 1a. Geology, 45(6), 543-546.

Teisserenc, P., Villemin, J. (1990). – Sedimentary basin of Gabon; geology and oil systems. In: Edwards, J.D., & Santogrossi, P.A. (Eds.), Divergent/passive margins basins. American Association of Petroleum Geologists Memoir, 48, 117-199.

Thompson, D.L., Stilwell, J.D. & Hall, M. (2015). – Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: pre-salt coquinas of Brazil and West Africa. Gondwana Research, 28, 26-51

Unternehr, P., Peron-Pinvidic, G., Manatschal, G., Sutra, E. (2010). – Hyper-extended crust in the South Atlantic; in search of a model. Petroleum Geoscience, 16, 207-215.

Wardlaw, N. C. (1972). – Unusual Marine Evaporites with Salts of Calcium and Magnesium Chloride in Cretaceous basins of Sergipe, Brazil. Economic Geology, 67(2), 156-168.

Wardlaw, N. C., & Nicholls, G. D. (1972). – Cretaceous evaporites of Brazil and West Africa and their bearing on the theory of continent separation. In: Proceedings 24th International Geological Congress, Ottawa, 43-55.

Warren, J. K. (2010). – Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3), 217-268.

Wernicke, B.P. (1985). – Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22, 108-125.

Zalán, P.V., Severino, M.G., Rigoti, C.A., Magnavita, L.P., Oliveira, J.A.B., & Viana, A.R. (2011). – An entirely new 3-D view of the crustal and mantle structure of a South Atlantic Passive Margin - Santos, Campos and Espírito Santo Basins, Brazil. In: AAPG Annual Conference and Exhibition, Houston, Texas, USA, 10-13.

 

 

Les marges Nord Atlantique de Norvège et Groenland : histoire polyphasée d’un rift et son évolution vers deux marges conjuguées (Ph. Werner)

Geoffroy, L., Burov, E.B., Werner, Ph., (2015). – Volcanic passive margins: another way to break up continents. Sci. Rep., 5. http://dx.doi.org/10.1038/srep14828.

Gernigon, L., Lucazeau, F., Brigaud, F., Ringenbach, J.C., Planke, S., Le Gall, B., (2006). – A moderate melting model for the Vøring margin (Norway) based on structural observations and a thermo-kinematical modelling: Implication for the meaning of the lower crustal bodies. Tectonophysics, 412, 255-278.

Lundin, E.R., Doré, A.G., (2011). – Hyperextension, serpentinisation, and weakening: a new paradigm for rifted margin compressional deformation. Geology, 39, 347-350.

Nirrengarten, M., Gernigon, L., Manatschal, G., (2014). – Lower crustal bodies in the Møre volcanic rifted margin: Geophysical determination and geological implications, Tectonophysics, 636, 143-157. http://dx.doi.org/10.1016/j.tecto.2014.08.004

Osmundsen, P.T., and Ebbing, J., (2008). – Styles of extension offshore mid-Norway and implica- tions for mechanisms of crustal thinning at passive margins. Tectonics, 27, TC6016, doi: 10.1029/2007tc002242.

Peron-Pinvidic, G., Manatschal, G., Osmundsen, P.T., (2013). – Similarities and differences between key Atlantic margins: a review of observations and concepts. Mar. Pet. Geol., 43, 21-47.

Peron-Pinvidic, G., Osmundsen, P.T., (2016). – Architecture of the distal and outer domains of the Mid-Norwegian rifted margin: Insights from the Rån-Gjallar ridges system. Mar. Pet. Geol., 77, 280-299. http://dx.doi.org/10.1016/j.marpetgeo.2016.06.014

 

 

Le rift Baïkal : origine, histoire tectonique et magmatique, processus extensifs (J. Deverchère et al.)

Artemieva, I.M., Mooney, W.D., (2001). – Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. Solid Earth, 106, 16387–16414. doi:10.1029/2000JB900439

Arzhannikova, A., Arzhannikov, S., Jolivet, M., Vassallo, R., Chauvet, A., (2011). – Pliocene to Quaternary deformation in South East Sayan (Siberia): Initiation of the Tertiary compressive phase in the southern termination of the Baikal Rift System. J. Asian Earth Sci., 40, 581-594. doi:10.1016/j.jseaes.2010.10.011

Brun, J.P., Beslier, M.O., (1996). – Mantle exhumation at passive margins. Earth Planet. Sci. Lett., 142, 161-173. doi:10.1016/0012-821X(96)00080-5

Buck, W.R., (1991). – Modes of Continental Lithospheric Extension. J. Geophys. Res., 96, 20161-20178. doi:10.1029/91JB01485

Calais, E., Vergnolle, M., San’kov, V., Lukhnev, A., Miroshnitchenko, A., Amarjargal, S., Déverchère, J., (2003). – GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): Implications for current kinematics of Asia. J. Geophys. Res. Solid Earth, 108. doi:10.1029/2002JB002373

Cogné, J.P., Kravchinsky, V.A., Halim, N., Hankard, F., (2005). – Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia). Geophys. J. Int., 163, 813-832. doi:10.1111/j.1365-246X.2005.02782.x

Daoudene, Y., Gapais, D., Ledru, P., Cocherie, A., Hocquet, S., Donskaya, T. V., (2009). – The Ereendavaa Range (north-eastern Mongolia): An additional argument for Mesozoic extension throughout eastern Asia. Int. J. Earth Sci., 98, 1381-1393. doi:10.1007/s00531-008-0412-2

De Boisgrollier, T., Petit, C., Fournier, M., Leturmy, P., Ringenbach, J.C., San’kov, V.A., Anisimova, S.A., Kovalenko, S.N., (2009). – Palaeozoic orogeneses around the Siberian craton: Structure and evolution of the Patom belt and foredeep. Tectonics, 28. doi:10.1029/2007TC002210

Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., San’kov, V., (1997). Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282, 1-38. doi:10.1016/S0040-1951(97)00210-2

Ebinger, C.J., Sleep, N.H., (1998). – Cenozoic magmatisme throughout east African resulting from impact of a single plume. Nature, 395, 788-791.

Hutchinson, D., Golmshtok, A., Zonenshain, L., Moore, T., Scholz, C., Klitgord, K., (1992). – Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology, 20, 589-592.

Ivanov, A. V., Demonterova, E.I., (2010). – Extension in the Baikal rift and the depth of basalt magma generation. Dokl. Earth Sci., 435, 1564-1568. doi:10.1134/S1028334X10120032

Ivanov, A. V., Demonterova, E.I., He, H., Perepelov, A.B., Travin, A. V., Lebedev, V.A., (2015). – Volcanism in the Baikal rift: 40years of active-versus-passive model discussion. Earth-Science Rev., 148, 18-43. doi:10.1016/j.earscirev.2015.05.011

Jolivet, M., (2017). –Mesozoic tectonic and topographic evolution of Central Asia and Tibet: a preliminary synthesis. Geol. Soc. London, Spec. Publ., 427, 19-55. doi:10.1144/SP427.2

Jolivet, M., Arzhannikov, S., Chauvet, A., Arzhannikova, A., Vassallo, R., Kulagina, N., Akulova, V., (2013). – Accommodating large-scale intracontinental extension and compression in a single stress-field: A key example from the Baikal Rift System. Gondwana Res., 24, 918-935. doi:10.1016/j.gr.2012.07.017

Koulakov, I., Bushenkova, N., (2010). – Upper mantle structure beneath the Siberian craton and surrounding areas based on regional tomographic inversion of P and PP travel times. Tectonophysics, 486, 81-100. doi:10.1016/j.tecto.2010.02.011

Krivonogov, S.K., Safonova, I.Y., (2017). – Basin structures and sediment accumulation in the Baikal Rift Zone: Implications for Cenozoic intracontinental processes in the Central Asian Orogenic Belt. Gondwana Res., 47, 267-290. doi:10.1016/j.gr.2016.11.009

Lesne, O., Calais, E., Deverchère, J., Chéry, J., Hassani, R., (2000). – Dynamics of intracontinental extension in the north Baikal rift from two-dimensional numerical deformation modeling. J. Geophys. Res. Solid Earth, 105, 21727-21744. doi:10.1029/2000JB900139

Lukhnev, A. V., San’kov, V.A., Miroshnichenko, A.I., Ashurkov, S. V., Byzov, L.M., San’kov, A. V., Bashkuev, Y.B., Dembelov, M.G., Calais, E., (2013). – GPS-measurements of recent crustal deformation in the junction zone of the rift segments in the central Baikal rift system. Russ. Geol. Geophys., 54, 1417-1426. doi:10.1016/j.rgg.2013.10.010

Mats, V.D., Perepelova, T.I., (2011). – A new perspective on evolution of the Baikal Rift. Geosci. Front., 2, 349-365. doi:10.1016/j.gsf.2011.06.002

Mats, V.D., Shcherbakov, D.Y., Efimova, I.M., (2011). – Late Cretaceous-Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr. Geol. Correl., 19, 404-423. doi:10.1134/S0869593811040058

Metelkin, D. V., Gordienko, I. V., Klimuk, V.S., (2007). – Paleomagnetism of Upper Jurassic basalts from Transbaikalia: new data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia. Russ. Geol. Geophys., 48, 825-834. doi:10.1016/j.rgg.2007.09.004

Molnar, P., Tapponnier, P., (1975). – Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189, 419-426. doi:10.1126/science.189.4201.419

Mordvinova, V. V., Deschamps, A., Dugarmaa, T., Deverchére, J., Ulziibat, M., Sankov, V.A., Artem’ev, A.A., Perrot, J., (2007). – Velocity structure of the lithosphere on the 2003 Mongolian-Baikal transect from SV waves. Izv. Phys. Solid Earth, 43, 119-129. doi:10.1134/S1069351307020036

Petit, C., Déverchère, J., Houdry, F., Sankov, V.A., Melnikova, V.I., Delvaux, D., (1996). – Present-day stress field changes along the Baikal rift and tectonic implications. Tectonics, 15, 1171-1191.

Petit, C., Meyer, B., Gunnell, Y., Jolivet, M., San’Kov, V., Strak, V., Gonga-Saholiariliva, N., (2009). – Height of faceted spurs, a proxy for determining long-term throw rates on normal faults: Evidence from the North Baikal Rift System, Siberia. Tectonics, 28, 1-12. doi:10.1029/2009TC002555

Radziminovich, N.A., Gileva, N.A., Melnikova, V.I., Ochkovskaya, M.G., (2013). – Seismicity of the Baikal rift system from regional network observations. J. Asian Earth Sci., 62, 146-161. doi:10.1016/j.jseaes.2012.10.029

Radziminovich, Y.B., Shchetnikov, A.A., (2013). – Historical earthquakes studies in Eastern Siberia: State-of-the-art and plans for future. J. Asian Earth Sci., 62, 134-145. doi:10.1016/j.jseaes.2012.09.017

Rasskazov, S. V., (1993). – Magmatism of the Baikal Rift System. Nauk. Novossibirsk,287 (in Russian).

San’kov, V.A., Déverchère, J., Gaudemer, Y., Houdry, F., Filippov, A., (2000). – Geometry and rate of faulting in the North Baikal Rift, Siberia. Tectonics, 19, 707-722. doi:10.1029/2000TC900012

San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., (2011). – Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics, 45(5), 378-393. DOI:10.1134/S0016852111050049

Tiberi, C., Deschamps, A., Déverchère, J., Petit, C., Perrot, J., Appriou, D., Mordvinova, V., Dugaarma, T., Ulzibaat, M., Artemiev, A.A., (2008). – Asthenospheric imprints on the lithosphere in Central Mongolia and Southern Siberia from a joint inversion of gravity and seismology (MOBAL experiment). Geophys. J. Int., 175, 1283–1297. doi:10.1111/j.1365-246X.2008.03947.x

Tiberi, C., Diament, M., Déverchère, J., Petit-Mariani, C., Mikhailov, V., Tikhotsky, S., Achauer, U., (2003). – Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology. J. Geophys. Res. Solid Earth, 108. doi:10.1029/2002JB001880

Vassallo, R., Ritz, J.F., Braucher, R., Jolivet, M., Carretier, S., Larroque, C., Chauvet, A., Sue, C., Todbileg, M., Bourlès, D., Arzhannikova, A., Arzhannikov, S., (2007). – Transpressional tectonics and stream terraces of the Gobi-Altay, Mongolia. Tectonics, 26. doi:10.1029/2006TC002081

Wang, W., Tang, J., Xu, W.L., Wang, F., (2015). – Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt. Lithos, 218-219, 73-86. doi:10.1016/j.lithos.2015.01.012

Wei, D.P., Seno, T., (1998). – Determination of the Amurian Plate motion. In: M. F. J. Fowler et al. (Ed.), Mantle Dynamics and Plate Interactions in East Asia. Washington D. C.

Windley, B.F., Alexeiev, D. V., Xiao, W., Kröner, A., Badarch, G., (2007). – Tectonics models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. London, 164, 31-47. doi:10.1144/0016-76492006-022

Yang, H., Chemia, Z., Artemieva, I.M., Thybo, H., (2018). – Control on off-rift magmatism: A case study of the Baikal Rift Zone. Earth Planet. Sci. Lett., 482, 501-509. doi:10.1016/j.epsl.2017.11.040

 

 

Rifting, magmatisme et croûte transitionnelle en Afar central (N. Bellhasen et al.)

Bastow, I. D., and D. Keir (2011). – The protracted development of the continent–ocean transition in Afar. Nat. Geosci., 4(4), 248–250, doi:10.1038/ngeo1095

Barberi et al. (1974). – Carte géologique de la dépression des Danakil, CNRS-CNR

Berckhemer, H., B. Baier, H. Bartelsen, A. Behle, H. Burkhardt, H. Gebrande, J. Makris, H. Menzel, H. Miller, and R. Vees (1975). – Deep seismic soundings in the Afar region and on the highland of Ethiopia. In Afar Depression of Ethiopia, Proceedings of an International Symposium on the Afar Region and Related Rift Problems, Bad Bergzabern, F.R. Germany, April 1–6, 1974, vol. 1, edited by A. Pilger and A. Rösler, pp. 89–107, Schweizerbart, Stuttgart, Germany.

Doubre, C., Deprez, A., Masson, F., Socquet, A., Lewi, E., Grandin, R., ... & Abayazid, A. (2016). – Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements. Geophysical Journal International, 208(2), p. 936-953.

Hofmann, C., V. Courtillot, G. Feraud, P. Rochette, G. Yirgu, E. Ketefo, and R. Pik (1997). – Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature, 389(6653), p. 838-841.

Kidane, T., V. Courtillot, I. Manighetti, L. Audin, P. Lahitte, X. Quidelleur, P.-Y. Gillot, Y. Gallet, J. Carlut, and T. Haile (2003). – New paleomagnetic and geochronologic results from Ethiopian Afar: Block rotations linked to rift overlap and propagation and determination of a 2 Ma reference pole for stable Africa. J. Geophys. Res., 108(B2), 2102, doi:10.1029/2001JB000645.

Pik, R., C. Deniel, C. Coulon, G. Yirgu, and B. Marty (1999). – Isotopic and trace element signatures of Ethiopian flood basalts: Evidence for plume–lithosphere interactions. Geochim. Cosmochim. Acta, 63(15), p. 2263-2279.

Ruegg, J. C., Lepine, J. C., Tarantola, A., & Kasser, M. (1979). – Geodetic measurements of rifting associated with a seismovolcanic crisis in afar. Geophysical Research Letters, 6(11), p. 817-820.

Stab, M., Bellahsen, N., Pik, R., Quidelleur, X., Ayalew, D., & Leroy, S. (2016). – Modes of rifting in magmarich settings: tectonomagmatic evolution of Central Afar. Tectonics, 35(1), p. 2-38.

Tazieff, H., Varet, J., Barberi, F., & Giglia, G. (1972). – Tectonic significance of the Afar (or Danakil) depression. Nature, 235(5334), 144.

Varet et al. (1975). – Carte géologique de l’Afar central et mérodional. CNRS-CNR

 

 

Rifting continental et accrétion océanique dans le golfe d'Aden (S. Leroy et C. Nonn)

Ahmed, A., Leroy, S., Korostelev, F., Khanbari, K., Rolandone, F., Stuart, G., Obrebski, M., (2014). – Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen). Tectonophysics, 637, 251-267. doi:10.1016/j.tecto.2014.10.014

Autin, J., Leroy, S., Beslier, M.-O., d'Acremont, E., Razin, P., Ribodetti, A., Bellahsen, N., Robin, C., Al-Toubi, K., (2010). – Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman). Geophysical Journal International, 180, 501-519. doi:10.1111/j.1365-246X.2009.04424.x

Bellahsen, N., Faccenna, C., Funiciello, F., Daniel, J.M., Jolivet, L., (2003). – Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth and Planetary Science Letters, 216, 365-381. doi:10.1016/S0012-821X(03)00516-8

Bellahsen, N., Husson, L., Autin, J., Leroy, S., d'Acremont, E., (2013). – Tectonophysics. Tectonophysics, 607, 80-97. doi:10.1016/j.tecto.2013.05.042

Bronner, A., Sauter, D., Manatschal, G., Peron-Pinvidic, G., Munschy, M., (2011). – Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nature Geoscience, 4, 549-553. doi:10.1038/nphys1201

Cannat, M., Manatschal, G., Sauter, D., Péron-Pinvidic, G., (2009). – Assessing the conditions of continental breakup at magma-poor rifted margins: What can we learn from slow spreading mid-ocean ridges? Comptes Rendus Geoscience, 341, 406-427. doi:10.1016/j.crte.2009.01.005

d'Acremont, E., Leroy, S., Maia, M., Patriat, P., Beslier, M.-O., Bellahsen, N., Fournier, M., Gente, P., (2006). – Structure and evolution of the eastern Gulf of Aden: insights from magnetic and gravity data (Encens-Sheba MD117 cruise). Geophysical Journal International, 165, 786-803. doi:10.1111/j.1365-246X.2006.02950.x

Davy, R.G., Minshull, T.A., Bayrakci, G., Bull, J.M., Klaeschen, D., Papenberg, C., Reston, T.J., Sawyer, D.S., Zelt, C.A., (2016). – Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic. 1-23. doi:10.1002/(ISSN)2169-9356

Fournier, M., Chamot-Rooke, N., Petit, C., Huchon, P., Al-Kathiri, A., Audin, L., Beslier, M.-O., d'Acremont, E., Fabbri, O., Fleury, J.-M., Khanbari, K., Lepvrier, C., Leroy, S., Maillot, B., Merkouriev, S., (2010). – Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. J. Geophys. Res., 115, B04102–24. doi:10.1029/2008JB006257

Huchon, P., Khanbari, K., (2003). – Rotation of the syn-rift stress field of the northern Gulf of Aden margin, Yemen. Tectonophysics, 364, 147-166. doi:10.1016/S0040-1951(03)00056-8

Jagoutz, O., Müntener, O., Manatschal, G., Rubatto, D., Péron-Pinvidic, G., Turrin, B.D., Villa, I.M., (2007). – The rift-to-drift transition in the North Atlantic: A stuttering start of the MORB machine? Geology, 35, 1087. doi:10.1130/g23613a.1

Leroy, S., Lucazeau, F., d'Acremont, E., Watremez, L., Autin, J., Rouzo, S., Bellahsen, N., Tiberi, C., Ebinger, C., Beslier, M.-O., Perrot, J., Razin, P., Rolandone, F., Sloan, H., Stuart, G., Al-Lazki, A., Al-Toubi, K., Bache, F., Bonneville, A., Goutorbe, B., Huchon, P., Unternehr, P., Khanbari, K., (2010). – Contrasted styles of rifting in the eastern Gulf of Aden: A combined wide-angle, multichannel seismic, and heat flow survey. Geochem. Geophys. Geosyst., 11, n/a–n/a. doi:10.1029/2009GC002963

Leroy, S., Razin, P., Autin, J., Bache, F., d'Acremont, E., Watremez, L., Robinet, J., Baurion, C., Denèle, Y., Bellahsen, N., Lucazeau, F., Rolandone, F., Rouzo, S., Kiel, J.S., Robin, C., Guillocheau, F., Tiberi, C., Basuyau, C., Beslier, M.-O., Ebinger, C., Stuart, G., Ahmed, A., Khanbari, K., Ganad, I., Clarens, P., Unternehr, P., Toubi, K., Lazki, A., (2012). – From rifting to oceanic spreading in the Gulf of Aden: a synthesis. Arab J Geosci, 5, 859-901. doi:10.1007/s12517-011-0475-4

Lister, G.S., Etheridge, M.A., Symonds, P.A., (1986). – Detachment faulting and the evolution of passive continental margins. Geology, 14, 246. doi:10.1130/0091-7613(1986)14<246:dfateo>2.0.co;2

Manighetti, I., Tapponnier, P., Courtillot, V., Gruszow, S., Gillot, P.-Y., (1997). – Propagation of rifting along the ArabiaSomalia Plate Boundary: The Gulfs of Aden and Tadjoura. J. Geophys. Res. Solid Earth, 102, 2681-2710. doi:10.1029/96JB01185

Nonn, C., Leroy, S., Khanbari, K., Ahmed, A., (2017). – Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins_ Narrowness and asymmetry in oblique rifting context. Tectonophysics, 721, 322-348. doi:10.1016/j.tecto.2017.09.024

Nonn, C., Leroy, S., Lescanne, M., Castilla, R., (2018). – From rifting to lithospheric breakup of the central Gulf of Aden conjugate margins (Yemen- Somalia): the case of a hybrid passive margins system. Marine Petroleum Geology, 1-46.

Osmundsen, P.T., Redfield, T.F., (2011). – Crustal taper and topography at passive continental margins. Terra Nova, 23, 349-361. doi:10.1111/j.1365-3121.2011.01014.x

Reston, T.J., Krawczyk, C.M., Klaeschen, D., (1996). – The S reflector west of Galicia (Spain): Evidence from prestack depth migration for detachment faulting during continental breakup. J. Geophys. Res. Solid Earth, 101, 8075-8091. doi:10.1029/95jb03466

Reston, T.J., Pennell, J., Stubenrauch, A., Walker, I., Perez-Gussinye, M., (2001). – Detachment faulting, mantle serpentinization, and serpentinite- mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology, 29, 587. doi:10.1130/0091-7613(2001)029<0587:dfmsas>2.0.co;2

Sauter, D., Cannat, M., Rouméjon, S., Andreani, M., Birot, D., Bronner, A., Brunelli, D., Carlut, J., Delacour, A., Guyader, V., MacLeod, C.J., Manatschal, G., Mendel, V., Ménez, B., Pasini, V., Ruellan, E., Searle, R., (2013). – Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6, 314-320. doi:10.1038/ngeo1771

Sibuet, J.-C., Srivastava, S., (2007). – Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. J. Geophys. Res., 112, B06105. doi:10.1029/2005JB003856

Watremez, L., Leroy, S., Rouzo, S., d'Acremont, E., Unternehr, P., Ebinger, C., Lucazeau, F., Al-Lazki, A., (2011). – The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data. Geophysical Journal International, 184, 575-594. doi:10.1111/j.1365-246X.2010.04881.x

 

 

Les « rifts » Karoo en Afrique : leur signification à l’échelle du Gondwana et de la subduction de la Panthalassa (F. Guillocheau et al.)

Banks N.L., Bardwell K.A., Musiwa S. (1995). – Karoo rift basins of the Luangwa Valley, Zambia. Geological Society, London, Special Publications, 80, 285-295.

Blewett S.C.J., Phillipps D. (2016). – An overview of the Cape Fold Belt geochronology : implications for sediment provenance and the timing of the orogenesis. In: Linol B, de Wit M Eds. Origin and evolution of the Cape Fold Belt and Karoo Basins. Switzerland. Springer International Publishing, 2016, pp. 45-55.

Daly M.C., Lawrence S.R., Diemu-Tshiband K., Matouana B. (1992). – Tectonic evolution of the Cuvette Centrale, Zaire. Journal of the Geological Society, 149, 539-546.

Hansma J., Tohver E., Schrank C., Jourdan F., Adams D. (2015). – The timing of the Cape Orogeny: New 40Ar/39Ar age constraints on deformation and cooling of the Cape Fold Belt, South Africa. Gondwana Research, 32, 122-137.

Hiller K., Buttkus B. (1996). – Structural style and sedimentary thicknesses in the Zambezi Rift valley, Zimbabwe – investigation for the potential for hydrocarbons. Zeitschrift für angewandte Geologie, 42, 132-137.

Li P., Rosenbaum G., Vasconcelos P. (2014). – Chronological constraints on the Permian geodynamic evolution of eastern Australia. Tectonophysics, 617, 20-30.

McKay M.P., Coble M.A., Hessler A.M., Weislogel A.L., Fildani A. (2016). – Petrogenesis and provenance of distal volcanic tuffs from the Permian-Triassic Karoo Basin, South Africa: A window into a dissected magmatic province. Geosphere, 12, 1-14.

Pankhurst R.J., Rapela C.W., Fanning C.M., Márquez M. (2006). – Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews, 76, 235-257.

 

 

Où sont les structures extensives du bassin de Columbrets (golfe de Valence, Espagne) ? (G. Mohn et al.)

Etheve N. (2016). – Le Bassin de Valence à la frontière des domaine ibérique et méditerranéen : Evolution tectonique et sédimentaire du Mésozoïque au Cénozoïque.Thèse de Doctorat de l’Université de Cergy-Pontoise

Etheve N., Mohn G., Frizon de Lamotte D., Roca E., Tugend J., Gomez-Romeu J. (2018). – Extreme Mesozoic Crustal Thinning in the Eastern Iberia Margin: The Example of the Columbrets Basin (Valencia Trough). Tectonics, 37(2), 636-662. https://doi.org/10.1002/2017TC004613

 

 

Une excursion géologique dans le rift Afar à Djibouti (J. Rolet et al.)

Barberi F., Ferrara G., Santacroce R., Varet J., (1975). – Structural evolution of the Afar triple junction. In Afar depression of Ethiopia, Pilger and Roster, Eds., Schweizerbart, Stuttgart, p. 38-54.

Caminiti A.M., (2000). – Le fossé d’Asal et le lac Abhé, deux sites géologiques exceptionnels en République de Djibouti. Editions Couleur Locale, Djibouti, 132 p.

De Chabalier J.B., (1993). Topographie et déformation tridimentionnelle du rift d’Asal (Djibouti). Thèse, Inst. Phys. Du Globe de Paris.

Demange J. et Puvilland P., (1993). – Champ géothermique d’Asal. Djibouti. Synthèse des données. Rapport CFD, 93CFG06, 87 p., Orléans.

Daoud M. A., (2008). – Dynamique du rifting continental de 30 Ma à l’Actuel dans la partie Sud Est du Triangle Afar. Tectonique et magmatisme du rift de Tadjoura et des domaines Danakil et d’Ali Sabieh, République de Djibouti. Thèse Université de Bretagne Occidentale, Brest, 190 p.

Daoud M.A., Barrat J.A., Maury R., Taylor R.N., Le Gall B., Guillou H., Cotten J. & Rolet J. (2010). – A LREE-depleted component in the Afar plume: further evidence from Quaternary Djibouti basalts. Lithos, 114, 327-336.

Daoud M. A., Le Gall B., Maury R.C., Rolet J., Huchon Ph.& Guillou H., (2011). – Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti. Tectonics, vol. 30, TC1002.

Fontes J.-C. et Pouchan P., (1975). – Les cheminées du lac Abbé (TFAI) : stations hydroclimatiques de l’Holocène. C.R. Acad. Sc. Paris, t. 280, série D, p. 383-386.

Gasse F., (1975). – L’évolution des lacs de l’Afar central (Ethiopie et TFAI) du Plio-Pléistocène à l’actuel. Thèse Dr. Et., Université Paris VI, 406 p.

Gasse F. et Fontes J.C., (1989). – Paleoenvironnements and paleohydrology of a tropical closed lake (lake Asal, Djibouti) since 10, 000 yr B.P. Paleogeogr., Paleoclim., Paleoecol., 69, p. 67-102.

Langguth H.R. et Pouchan P., (1975). – Caractères physiques et conditions de stabilité du lac Assal (T.F.A.I.). In Afar depression of Ethiopia, Pilger and Roster, Eds., Schweizerbart, Stuttgart, p. 250-258.

Le Gall B., Daoud M.A., Rolet J. et Egueh N.M., (2010). – Large-scale flexuring and antithetic extensional faulting along a nascent plate boundary in the SE Afar rift. Terra Nova, 23, p. 416-420

Le Gall B., Daoud M.A., Maury R.C., Rolet J., Guillou H. et Sue C., (2010). – Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti. Journal of Structural Geology, 32, p. 843-854.

Manighetti I., (1993). – Dynamique des systèmes extensifs en Afar. Thèse de Doctorat ; Tectonique et Géodynamique, Paris, Université de Paris VI, 240 p.

Stietljes, L., (1973). – L’axe tectono-volcanique d’Asal (Afar central - TFAI). Thèse, Doctorat de 3ème cycle, Université de Paris XI.

Varet J. et Gasse, F., (1978). – Carte géologique de l’Afar central et méridional (Ethiopie et République de Djibouti). Ech. 1 :500 000, CNRS éd., 125 p.

Vellutini P. et Piguet P., (1994). – Djibouti. Itinéraires géologiques. Coopération française, 294p.