Enseigner les marges passives : un aperçu des innovations scientifiques des deux dernières décennies (Chenin. et al.)
Andreani, M., Daniel, I., & Pollet-Villard, M. (2013). – Aluminum speeds up the hydrothermal alteration of olivine. American Mineralogist, 98(10), 1738-1744.
Boillot, G., Grimaud, S., Mauffret, A., Mougenot, D., Kornprobst, J., Mergoil-Daniel, J., & Torrent, G. (1980). – Ocean-continent boundary off the Iberian margin: a serpentinite diapir west of the Galicia Bank. Earth and Planetary Science Letters, 48(1), 23-34.
Boillot, G., Recq, M., Winterer, E. L., Meyer, A. W., Applegate, J., Baltuck, M., & Evans, C. A. (1987). – Tectonic denudation of the upper mantle along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin, Spain). Tectonophysics, 132(4), 335-342.
Bronner, A., Sauter, D., Manatschal, G., Péron-Pinvidic, G., & Munschy, M. (2011). – Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nature Geoscience, 4(8), 549-553.
Byerlee, J. (1978). – Friction of rocks. In: Rock friction and earthquake prediction. Birkhäuser, Basel, 615-626.
Chenin, P., Manatschal, G., Lavier, L. L., & Erratt, D. (2015). – Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. Journal of the Geological Society, 172(6), 711-720.
Chenin, P., Manatschal, G., Decarlis, A., Schmalholz, S. M., Duretz, T., & Beltrando, M. (2019). – Emersion of Distal Domains in Advanced Stages of Continental Rifting Explained by Asynchronous Crust and Mantle Necking. Geochemistry, Geophysics, Geosystems, 20(8), 3821-3840.
Decandia, F. A., & Elter, P. (1969). – Riflessioni sul problema delle ofioliti nell'Appennino settentrionale (nota preliminare).
Epin, M. E., Manatschal, G., & Amann, M. (2017). – Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland). Swiss Journal of Geosciences, 110(2), 419-438.
Gillard, M., Autin, J., & Manatschal, G. (2016). – Fault systems at hyper-extended rifted margins and embryonic oceanic crust: Structural style, evolution and relation to magma. Marine and Petroleum Geology, 76, 51-67.
Gillard, M., Manatschal, G., & Autin, J. (2016). – How can asymmetric detachment faults generate symmetric Ocean Continent Transitions? Terra nova, 28(1), 27-34.
Haupert, I., Manatschal, G., Decarlis, A., & Unternehr, P. (2016). – Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution. Marine and Petroleum Geology, 69, 241-261.
Jagoutz, O., Muntener, O., Manatschal, G., Rubatto, D., Péron-Pinvidic, G., Turrin, B. D., & Villa, I. M. (2007). The rift-to-drift transition in the North Atlantic: A stuttering start of the MORB machine? Geology, 35(12), 1087-1090.
Kelley, D. S., Karson, J. A., Blackman, D. K., Früh-Green, G. L., Butterfield, D. A., Lilley, M. D., Olson, E. J., Schrenk, M. O., Roe, K. K., Lebon, G. T., Rivizzigno, P., & the AT3-60 Shipboard Party. (2001). – An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 N. Nature, 412(6843), 145-149.
Kohlstedt, D. L., Evans, B., & Mackwell, S. J. (1995). – Strength of the lithosphere: Constraints imposed by laboratory experiments. Journal of Geophysical Research: Solid Earth, 100(B9), 17587-17602.
Lewis, D. S. (2014). – New Insights into Late Synrift Subsidence from Detailed Well Ties and Seismic Mapping, Campos Basin, Brazil. Sedimentary basins: Origin, depositional histories and petroleum systems, 98-115.
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., & Sauter, D. (2018). – Kinematic evolution of the southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37(1), 89-118.
Péron-Pinvidic, G., & Manatschal, G. (2009). – The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view. International Journal of Earth Sciences, 98(7), 1581-1597.
Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., & Johnson, C. (2016). – Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos, 266, 233-263.
Reuber, K., & Mann, P. (2019). – Control of Precambrian-to-Paleozoic orogenic trends on along-strike variations in Early Cretaceous continental rifts of the South Atlantic Ocean. Interpretation, 7(4), SH45-SH69.
Ribes, C., Petri, B., Ghienne, J. F., Manatschal, G., Galster, F., Karner, G. D., Figueredo, P. H., Johnson, C. A., & Karpoff, A. M. (2019). – Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE Switzerland). Geological Society of America Bulletin.
Steinman, G. (1905). – Geologische Beobachtungen in den Alpen, II. Die Schardtshe Ueberfaltungstheorie und die geologische Bedeutung der Tiefseeabatze und der ophiolitschen Massengesteine. Bereichte Naturforeschenden Gesellschaft Freiburg im Breisgau, 16, 18-67.
Tomasi, S. (2020). – Interaction between magmatism and deformation at magma-rich rifted margins: The example of the Mozambique Channel (2020); Thèse de Doctorat de l'Université de Strasbourg, 210 p.
Vine, F. J., & Matthews, D. H. (1963). – Magnetic anomalies over oceanic ridges. Nature, 199(4897), 947-949.
Flux de chaleur et transferts de matière dans le manteau Terrestre : panaches, slabs et géoressources (L. Guillou-Frottier)
Begg G.C., J.A.M. Hronsky, N.T. Arndt, W.L. Griffin, S.Y. O’Reilly, N. Haywars (2010). – Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Economic Geology, 105, 1057-1070. https://doi.org/10.2113/econgeo.105.6.1057
Bertrand G., L. Guillou-Frottier, C. Loiselet (2014). – Distribution of porphyry copper deposits along the western Tethyan and Andean subduction zones: Insights from a paleotectonic approach. Ore Geology Reviews, 60, 174-190. https://doi.org/10.1016/j.oregeorev.2013.12.015
Bierlein F.P., D.I. Groves, R.J. Goldfarb, B. Dubé (2006). – Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Mineralium Deposita, 40, 874-886. https://doi.org/10.1007/s00126-005-0046-2
Coltice N., L. Husson, C. Faccenna, M. Arnould (2019). – What drives tectonic plates ? Science Advances, 5, 10, eaax4295. https://doi.org/10.1126/sciadv.aax4295
Courtillot V., J. Besse (1987). – Magnetic-field reversals, polar wander, and core-mantle coupling. Science, 237, 4819, 1140-1147. https://doi.org/10.1126/science.237.4819.1140
Courtillot V., A. Davaille, J. Besse, J. Stock. (2003) – Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Letters, 205, 295-308. https://doi.org/10.1016/S0012-821X(02)01048-8
Duwiquet H., L. Arbaret, L. Guillou-Frottier, M. J. Heap, M. Bellanger (2019). – On the geothermal potential of crustal fault zones: a case study from the Pontgibaud area (French Massif Central, France). Geothermal Energy, 2019, 7-33,. https://doi.org/10.1186/s40517-019-0150-7
Faccenna C., T.W. Becker (2010). – Shaping mobile belts by small-scale convection. Nature, 465, 602-605. https://doi.org/10.1038/nature09064
Groves D.I., K.C. Condie, R.J. Goldfarb, J.M.A. Hronsky, R.M. Vielreicher (2005). – Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100, 203-224. https://doi.org/10.2113/gsecongeo.100.2.203
Guillou L., C. Jaupart (1995). – On the effect of continents on mantle convection. Journal of Geophysical Research, 100, 24217-24238. https://doi.org/10.1029/95JB02518
Guillou-Frottier L., J. Buttles, P. Olson (1995). – Laboratory experiments on the structure of subducted lithosphere. Earth and Planetary Science Letters, 133,19-34. https://doi.org/10.1016/0012-821X(95)00045-E
Guillou-Frottier L., C. Loiselet (2010). – Numerical experiments on the thermal structure of deep subducted lithosphere: deformation regimes, associated thermal anomalies and comparison with present-day seismic imprints. American Geophysical Union, Fall Meeting, abstract id. DI31A-1951.
Haas I.O., C.R. Hoffmann (1929). – Temperature gradient in Pechelbronn oil bearing region, lower Alsace: its determination and relation to oil reserves. Bulletin of American Association of Petroleum Geologists, XIII 10, 1257-1273. https://doi.org/10.1306/3D932884-16B1-11D7-8645000102C1865D
Hoggard M.J., R. Parnell-Turner, N. White (2020). – Hotspots and mantle plumes revisited: Towards reconciling the mantle heat transfer discrepancy. Earth and Planetary Science Letters, 542, 116317. https://doi.org/10.1016/j.epsl.2020.116317
Ingebritsen S.E., T. Gleeson (2015). – Crustal permeability: Introduction to the special issue. Geofluids, 15, 1-10. https://doi.org/10.1111/gfl.12118
Iovenitti J., F.H. Ibser, M. Clyne, J. Sainsbury, O. Callahan (2016). – The Basin and Range Dixie Valley geothermal Wellfield, Nevada,USA - a test bed for developing an enhanced geothermal system exploration favorability methodology. Geothermics, 63, 195-209. http://dx.doi.org/10.1016/j.geothermics.2016.01.001
Jaupart C., S. Labrosse, F. Lucazeau, J.-C. Mareschal (2015). – Temperatures, heat, and energy in the mantle of the Earth. In: Gerald Schubert (editor-in-chief) Treatise on Geophysics, 2nd edition, Vol. 7. Oxford: Elsevier, p. 223-270.
Jolivet L., C. Faccenna, T. Becker, M. Tesauro, P. Sternai, P. Bouilhol (2018). – Mantle flow and deforming continents: from India-Asia convergence to Pacific subduction. Tectonics, 37, 2887-2914. https://doi.org/10.1029/2018TC005036
Kellogg L.H., B.H. Hager, R.D. van der Hilst (1999). – Compositional stratifcation in the deep mantle. Science, 283, 1881-1884. https://doi.org/10.1126/science.283.5409.1881
Lucazeau F. (2019). – Analysis and mapping of an updated terrestrial heat flow data set. Geochemistry, Geophysics, Geosystems, 20, 4001-4024. https://doi.org/10.1029/2019GC008389
Manga, M. (2001). – Shaken not stirred. Nature, 410, 1041-1043. https://doi.org/10.1038/35074235
Morgan, W.J. (1972). – Plate motions and deep mantle convection. The Geological Society of America, 132, 7-22.
Menant A., L. Jolivet, J. Tuduri, C. Loiselet, G. Bertrand, L. Guillou-Frottier (2018). – 3D subduction dynamics: a first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geology Reviews, 94, 118-135. https://doi.org/10.1016/j.oregeorev.2018.01.023
Olson, P. (1990). – Hot spots, swells and mantle plumes. In : Magma Transport and Storage, p. 33-51, ed. M.P. Ryan, John Wiley & Sons Ltd., Chichester, U.K.
Pik R., C. Deniel, C. Coulon, G. Yirgu, B. Marty (1999). – Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochemica et Cosmochimica Acta, 63, 2263-2279. https://doi.org/10.1016/S0016-7037(99)00141-6
Ringwood A.E., T. Irifune (1988). – Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation. Nature, 331, 131-136. https://doi.org/10.1038/331131a0
Roche V., P. Sternai, L. Guillou-Frottier, A. Menant, L. Jolivet, V. Bouchot, T. Gerya (2018). – Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics. Earth and Planetary Science Letters, 498, 322-333. https://doi.org/10.1016/j.epsl.2018.06.043
Romanowicz, B. (2017). – The buoyancy of Earth’s deep mantle. Nature, 551, 308-309.
Tackley P. (2008). – Layer cake or plum pudding ? Nature Geoscience, 1, 157-158. https://doi.org/10.1038/ngeo134
Sillitoe R.H. (1972). – A Plate Tectonic model for the origin of porphyry copper deposits. Economic Geology, 67, 184-197. https://doi.org/10.2113/gsecongeo.67.2.184
White D.B. (1988). – The planforms and onset of convection with a temperature-dependent viscosity. Journal of Fluid Mechanics, 191, 247-286. https://doi.org/10.1017/S0022112088001582
Les dorsales océaniques : magmatisme et déformation (S. Leroy et J. Escartin)
Albers, M., Christensen, U.R., (2001). – Channeling of plume flow beneath mid-ocean ridges. Earth Planet. Sci. Lett. 187, 207-220.
Anonymous, (1972). – Penrose field conference on ophiolites: Geotimes, v. 17, p. 24-25.
Bosworth, W., P. Huchon, and K. McClay (2005). – The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43(1-3), 334-378, doi:10.1016/j.jafrearsci.2005.07.020.
Canales, J.P., Ito, G., Detrick, R.S., Sinton, J., (2002). – Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos hotspot swell. Earth Planet. Sci. Lett. 203, 311-327.
Cann, J.R., Blackman, D.K., Smith, D.K., McAllister, E., Janssen, B., Mello, S., Avgerinos, E., Pascoe, A.R., and Escartín, J. (1997). – Corrugated slip surfaces formed at North Atlantic ridge-transform intersections. Nature, 385, 329-332.
Cannat, M., (1993). – Emplacement of mantle rocks in the seafloor at mid-ocean ridges. Journal of Geophysical Research, 98, no. B3, p. 4163-4172.
Cannat, M. D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartín, V. Combier, M. Baala (2006). – Modes of seafloor generation at a melt-poor ultra-slow spreading ridge. Geology, 34, 605-608, doi:10.1130/G22486A.1, 2006.
Charlou, J.-L., and Donval, J.-P. (1993). – Hydrothermal methane venting between 12°N and 26°N along the Mid-Atlantic ridge. Journal of Geophysical Research, 98, no. B6, p. 9625-9642.
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K.E., Williams, D.A., Bainbridge, A., Crane, K., and van Andel, T.H. (1979). – Submarine thermal springs on the Galapagos Rift. Science, 203, 1073-1083.
Detrick, R.S., Bulh, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Trocher, T. (1987). – Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature, 326, 35-41.
Douglass, J., Schilling, J.G., Kingsley, R.H., Small, C. (1995). – Influence of the discovery and Shona mantle plumes on the southern mid-Atlantic Ridge: rare earth evidence. Geophys. Res. Lett., 22, 2893-2896.
Escartín, J. (2004). – The Oceanic Lithosphere, in : Geophysics and Geochemistry, J. Lastovicka (Ed.), in Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO, Eolss Publishers, Oxford, UK, [http://www.eolss.net], 2004.
Escartín, J. & J. P. Canales (2010). – Chapman Conference on Detachments in Oceanic lithosphere: Deformation, Magmatism, Fluid Flow and Ecosystems (Conference report), EOS Trans. AGU, 92(4), 31, 2010.
Escartín, J., C. Mével, S. Petersen, D. Bonnemains, M. Cannat, M. Andreani, N. Augustin, A. Bezos, V. Chavagnac, Y. Choi, M. Godard, K. Haaga, C. Hamelin, B. Ildefonse, J. Jamieson, B. John, T. Leleu, C. J. MacLeod, M. Massot-Campos, P. Nomikou, J. A. Olive, M. Paquet, C. Rommevaux, M. Rothenbeck, A. Steinfuhrer, M. Tominaga, L. Triebe, R. Campos, N. Gracias, and R. Garcia (2017). – Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid Atlantic Ridge). Geochem. Geophys. Geosys., 18(4), 1451-1482, doi 10.1002/2016GC006775, 2017.
Escartín, J., Smith, D.K., Cann, J., Schouten, H., Langmuir, C.H., and Escrig, S. (2008). – Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, 455(7214), p. 790-794, doi: 10.1038/nature07333.
Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J.L., OndréAs, H., Barriga, F.J.A.S., Cherkashov, G., Semkova, T., Poroshina, I., Bohn, M., Donval, J.P., Henry, K., Murphy, P., and Rouxel, O. (2010). – Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: a New Type Of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit, in Diversity Of Hydrothermal Systems On Slow Spreading Ocean Ridges. American Geophysical Union, p. 321-367.
Georgen, J.E., Lin, J., Dick, H.J.B. (2001). – Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the southwest Indian ridge: effects of transform offsets. Earth Planet. Sci. Lett. 187, 283-300.
Georgen, J.E., Lin, J. (2003). – Plume–transform interactions at ultra-slow spreading ridges: implications for the southwest Indian Ridge. Geochem. Geophys. Geosyst. 4, 9106.
Ito, G.T., Lin, J. (1995). – Mantle temperature anomalies along the past and paleoaxes of the Galápagos spreading center as inferred from gravity analyses. J. Geophys. Res., 100, 3733-3746.
Ito, G., Lin, J., Graham, D. (2003). – Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Rev. Geophys., 41, 1017-1040.
Ito, G., Shen, Y., Hirth, G., Wolfe, C.J. (1999). – Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett., 165, 81-96.
Lagabrielle, Y., A. V. Brovarone, and B. Ildefonse (2015). – Fossil oceanic core complexes recognized in the blueschist metaophiolites of Western Alps and Corsica. Earth Science Reviews, 141(C), 1-26, doi:10.1016/j.earscirev.2014.11.004.
Leroy, S., d'Acremont, E., Tiberi, C., Basuyau, C., Autin, J. & Lucazeau, F. (2010a). – Recent off-axis volcanism in the eastern Gulf of Aden: implications for plume-ridge interactions. Earth Planet. Sci. Lett., 293, 140-153. doi:10.1016/j.epsl.2010.02.036
Leroy, S. et al. (2010b). – Contrasted styles of rifting in the eastern Gulf of Aden: A combined wide-angle, multichannel seismic, and heat flow survey. Geochem. Geophys. Geosyst., 11(7), doi:10.1029/2009GC002963.
Ryan, W. B. F., S.M. Carbotte, J. Coplan, S. O'Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky (2009). – Global Multi-Resolution Topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst., 10, Q03014, doi:10.1029/2008GC002332.
Sauter, D., Cannat, M., Rouméjon, S., Andreani, M., Birot, D., Bronner, A., Brunelli, D., Carlut, J., Delacour, A., Guyader, V., MacLeod, C.J., Manatschal, G., Mendel, V., Ménez, B., et al., (2013). –Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6(4), 314-320, doi: 10.1038/ngeo1771.
Schilling, J.G., Kingsley, R.H., Devine, J.D. (1982). – Galapagos hotspot-spreading center system 1. Spatial petrological and geochemical variations (83°W–101°W). J. Geophys. Res., 87.
Schilling, J.-G. (1991). – Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352, 397-401.
Schilling, J.G., Zajac, M., Evans, R., Johnston, T., White, W., Devine, J.D., Kingsley, R. (1983). – Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29°N to 73°N. Am. J. Sci., 283, 510-586.
Sicilia, D., Montagner, J.-P., Cara, M., Stutzmann, E., Debayle, E., Lépine, J.-C., Lévêque, J.-J., Beucler, E., Sebai, A., Roult, G., Ayele, A., Sholan, J. (2008). – Upper mantle structure of shear-waves velocities and strati"cation of anisotropy in the Afar Hotspot region. Tectonophysics, 462, 164-177.
Turcotte, D.L., Schubert, G., (1982). – Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley, New York.
Vogt, P.R., Johnson, G.L. (1975). – Transform faults and longitudinal flow below the mid- oceanic ridge. J. Geophys. Res., 80, 1399-1428.
White, R.S., Bown, J.W., Smallwood, J.R. (1995). – The temperature of the Iceland plume and origin of outward-propagating V-shaped ridges. J. Geol. Soc. 152, 1039-1045.
Subduction et obduction : le destin de la lithosphère océanique vu à travers ses reliques (schistes bleus, éclogites, ophiolites) (Ph. Agard et A. Plunder)
Agard P. (2021). – Subduction of oceanic lithosphere in the Alps: selective and archetypal from (slow-spreading) oceans, Earth Science Reviews, sous presse.
Agard, P., Handy, M.R. (2021). – Ocean Subduction Dynamics in the Alps (sous presse).
Agard, P., Prigent, C., Soret, M., Dubacq, B., Guillot, S., Deldicque D. (2020). – Slabitization: mechanisms controlling subduction development and viscous coupling. Earth-Science Reviews, 208, 103259.
Agard P., Searle M., Alsop I., Dubacq B. (2010). – Crustal stacking and expulsion tectonics during continental subduction: P-T deformation constraints from Oman. Tectonics, 29(5), doi: 10.1029/2010TC002669
Angiboust S., Agard P., Yamato P., Raimbourg H. (2012). – Eclogite breccias in a subducted ophiolite: a record of intermediate-depth earthquakes? Geology, 40(8), 707-710. doi: 10.1130/G32925
Bonnet G., Agard P., Angiboust S., Fournier M., Omrani J. (2019). – No large earthquake in fully exposed subducted seamount. Geology, 47, 407-410. https:// doi .org /10 .1130 /G45564.1.
Fournier, M., Lepvrier, C., Razin, P., & Jolivet, L. (2006). – Late Cretaceous to Paleogene post-obduction extension and subsequent Neogene compression in the Oman Mountains. GeoArabia, 11(4), 17-40.
Les altérations supergènes et la géodynamique de la lithosphère (R. Wyns)
Bauer H., Bessin P., Saint-Marc P., Châteauneuf J.J., Bourdillon C., Wyns R., Guillocheau F. (2016). – The Cenozoic history of the Armorican Massif: New insights from the deep CDB1 borehole (Rennes Basin, France). Comptes Rendus Geosciences, 348, 5, 387-397.
Bonow J.M. (2005). – Re-exposed basement landforms in the Disko region, West Greenland – disregarded data for estimation of glacial erosion and uplift modelling. Geomorphology, 72, 106-127.
Dammer D., Mc DougallI., and Chivas A.R. (1999). – Timing of weathering-induced alteration of manganese deposits in Western Australia: Evidence from K/Ar and 40Ar/39Ar dating. Econ. Geol. 94, 87-108.
Dewandel B., Lachassagne P., Wyns R., Maréchal J.C., Krishnamurthy N.S. (2006). – A generalized hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330, 260-284
Estéoule-Choux J. (1967). – Contribution à l’étude des argiles du Massif armoricain. Argiles des altérations et argiles des bassins sédimentaires tertiaires. Thèse d’Etat, Université de Rennes, 319 p.
Fizaine J.P. (2012). – Les paléokarsts et les formations ferrugineuses associées dans le bassin parisien et ses bordures : caractérisations et évolutions géomorphologiques. Thèse, Université de Nancy, 468 p. et 157 p d’annexes.
Gilg H.A. & Frei R. (1997). – Isotope dating of residual kaolin deposits in Europe (Tirschenreuth, Germany and St. Yrieix, France). In: Energy and Mineral Resources for the 21st Century, Geology of Mineral Deposits, Mineral Economics (P. Rongfu, editor). Proceedings of the 30th International Geologic Congress, Beijing, Vol. 9, VSP International Science Publisher, Zeist., 123-132.
Gilg H.A. (2000). – D-H evidence for the timing of kaolinization in Northeast Bavaria, Germany. Chemic. Geol., 170, 5-18.
Gilg H.A., Hall A.M., Ebert K., Fallick A.E. (2013). – Cool kaolins in Finland. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 454-462.
Hautmann S. and Lippolt H.J. (2000). – Ar-40/Ar-39 dating of central European K-Mn oxides — A chronological framework of supergene alteration processes during the Neogene. Chem. Geol. 170 (1-4), 3, 7-80.
Hénocque O., Ruffet G., Colin F., Feraud G. (1998). – Ar-40/Ar-39 dating of West African lateritic cryptomelanes. Geochim. Cosmo-chim. Acta, 62(16), 2739-2756.
Hill I.G., Worden R.H., Meighan I.G. (2000). – Geochemical evolution of a palaeolaterite: the Interbasaltic Formation, Northern Ireland. Chemical Geology, 166, 65-84.
Lachassagne P., Wyns, R., Dewandel B. (2011). – The fracture permeability of hard rocks aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23, 145-161.
Li J. W., Vasconcelos P. (2002). – Cenozoic continental weathering and its implications for the palaeoclimate: evidence from 40Ar/39Ar geochronology of supergene K-Mn oxides in Mt Tabor, central Queensland, Australia. EPSL, (200), 223-239.
Maréchal J.C., Wyns R., Lachassagne P., Subrahmanyam K., Touchard F. (2003). – Anisotropie verticale de la perméabilité de l'horizon fissuré des aquifères de socle : concordance avec la structure géologique des profils d'altération, Comptes rendus Géoscience, 335, 451-460.
Merill G. P. (1897). – A treatise on rocks, rock-weathering and soils. New York, The Macmillan Company, 411 p.
Migon P. et Lidmar-Bergström K. (2001). – Weathering mantles and their signifïcance for geomorphological evolution of central and northem Europe since the Mesozoic. Earth-Science Reviews, 56, 285-324.
Parrish J.T., Ziegler A.M., Scotese C.R. (1982). – Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 40, 67-101.
Pédro, G. (1968.) – Distribution des principaux types d'altération chimique à la surface du globe. Présentation d'une esquisse géographique. Rev. Géogr. Phys. Géol. Dyn. Paris, 10(5), 457-470.
Ricordel-Prognon C., Lagroix F., Moreau M.G., Thiry M. (2010). – Lateritic paleoweathering profiles in French Massif Central: Paleomagnetic datings. J. Geophys. Res., 115, B10104, doi: 10.1029/2010JB007419.
Ruffet G., Innocent C., Michard A., Féraud G., Beauvais A., Nahon D. et Hamelin B. (1996). – A geochronological 40Ar/39Ar and 87Rb/87Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil. Geochimica & Cosmochimica Acta, 60(12), 2219-2232.
Savin S.M. (1977). – The history of the earth’s surface temperature during the past 100 million years. Ann. Rev. Earth Planer. Sci., 5, 319-355.
Schwarz T. (1997). – Lateritic bauxite in central Germany and implications for Miocene palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 37-50.
Shuster D.L., Vasconcelos P.M., Heim J.A., Farley K.A. (2005). – Weathering geochronology by (U-Th)/He dating of goethite. Geoch. Et Cosmoch. Acta, 69(3), 659-673.
Strakhov, N.M. (1967). – Principles of Lithogenesis. Oliver and Boyd, Edinburgh. 245 p.
Tardy Y. (1993). – Pétrologie des latérites et des sols tropicaux. Masson, Paris, 461 p.
Théveniaut H. et Freyssinet P. (1999). – Paleomagnetism applied to lateritic profiles to assess saprolite and duricrust formation process: the example of Mont Baduel profile (Ftench Guiana). Palaeogeography, Palaeoclimatology, Palaeoecology, 148(4), 209-231.
Théveniaut H. et Freyssinet P. (2002). – Timing of lateritization on the Guiana Shield: synthesis of palaeomagnetic results from French Guiana and Suriname. Palaeogeography, Palaeoclimatology, Palaeoecology, 178, 91-117.
Théveniaut H., Quesnel F., Wyns R., Hugues G. (2007). – Palaeomagnetic dating of the « Borne de Fer » ferricrete (NE France): Lower Cretaceous continental weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 271-279.
Utescher T., Bruch A.A., Micheels A., Mosbrugger V., Popova S. (2010). – Cenozoic climate gradients in Eurasia – A palaeo-perspective on future climate change? Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 351-358. doi:10.1016/j.palao.2010.09.031.
Vasconcelos P.M., Becker T.A., Renne PR. et Brimhall G.H. (1992). – Age and duration of weathering by 40K-40Ar and 40Ar/39Ar analysis of potassium-manganese oxides. Science, 258, 451-455.
Vasconcelos P.M., Renne P.R., BrimhallL G.H. et Becker T.A. (1994). – Direct dating of weathering phenomenon by 40Ar/39Ar and K-Ar analysis of supergene K-Mn oxides. Geochimica et Cosmochimica Acta, 58(6), 1635-1665.
Wyns R., Lardeux H., Moguedet G., Duermael G., Gruet M., Biagi R. (1998). – Carte géologique de la France (1/50 000), feuille Chemillé (483) et notice explicative 72 p. BRGM, Orléans.
Wyns R., (2002). – Climat, eustatisme, tectonique : quels contrôles pour l’altération continentale ? Exemple des séquences d’altération cénozoïques en France. Bull. Inf. Géol. Bass. Paris, 39(2), 5-16.
Wyns R., Quesnel F., Simon-Coinçon R., Guillocheau F., Lacquement F. (2003). – Major weathering in France related to lithospheric deformation, in Special conference on Paleoweathering and paleosurfaces in the Ardennes-Eifel region, Preizerdaul, Luxembourg, 14-17/05/2003, Géologie de la France, 1, 79-87.
Wyns R., Baltassat J.M., Lachassagne P., Legchenko A.V., Vairon J., Mathieu F. (2004). – Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de la Société Géologique de France, 175(1), 21-34.
Wyns R. (2010). – Tertiaire et altérites sur le seuil du Poitou. Bulletin Inf. Géol. Bass. Paris, 47(3), 25-28.
Wyns R., Cornu S., Prognon C. (2014). – Régolithe et sol : l’interface entre lithosphère et atmosphère. Géosciences Editions BRGM, 18, 8-15.
Wyns R. (2014). – Le Bassin parisien du Tertiaire à l'Actuel. In : Le Bassin parisien : un nouveau regard sur la géologie, Gély J.P. et Hanot F. (éd.), Assoc. Géol. Bass. Paris, Mém. Hors-série n°9, 85-93.
Yans J. (2003). – Chronologie des sédiments kaoliniques à faciès wealdiens (Barrémien moyen Albien supérieur; Bassin de Mons) et de la saprolite polyphasée (Crétacé inférieur et Miocène inférieur) de la Haute-Lesse (Belgique). Implications géodynamiques et paléoclimatiques. PhD thesis, Faculté Polytechnique de Mons and Université de Paris-Sud Orsay, 316 p.
De l’extension à la compression, une excursion géologique dans les Alpes occidentales au plus près des principaux processus géologiques (B. Le Bayon)
Angiboust, S., Agard, P., Raimbourg, H., Yamato, P., Huet, B. (2011). – Subduction interface processes recorded by eclogite-facies shear zones (Monviso, W. Alps). Lithos, 127, 222-238.
Barféty, J-C., & Gidon, M. (1983). – La stratigraphie et la structure de la couverture dauphinoise au Sud de Bourg d'Oisans. Leurs relations avec les déformations synsédimentaires jurassiques. Géologie alpine, 59, 5-32.
Le Bayon, B., & Ballèvre, M. (2006). – Deformation history of a subducted continental crust (Gran Paradiso, Western Alps): continuing crustal shortening during exhumation. Journal of Structural Geology, 28 (5), 793-815.
Locatelli, M. (2017). – Eclogitic breccias from Monviso (W. Alps): structural, petrographic and geochemical evidence for multiple rupture stages at intermediate depths in subduction zones. Thèse de doctorate n sciences de la terre. UPMC, Paris.
Tuduri, J. (2001). – Minéralisations cuprifères syn-orogéniques dans les Schistes Lustrés des Alpes Occidentales. Exemple de la mine de cuivre des Clausis (Saint-Véran, France). Master, Université d’Orléans.